Online first

Seashell-based bioceramics for advanced electrospun tissue scaffolds


Abstract views: 73 / PDF downloads: 14

Authors

DOI:

https://doi.org/10.62063/ecb-49

Keywords:

bioceramic, tissue scaffold, electrospinning, gelatin, polyvinyl alcohol.

Abstract

The demand for tissue scaffolds to support the repair, regeneration, and restoration of damaged tissues is rapidly growing. Scaffolds fabricated using the electrospinning technique are particularly significant in tissue engineering due to their ability to provide micro- to nano-scale porosity and a large surface area. This study focuses on developing tissue scaffolds with enhanced cell adhesion, biodegradability, and tensile strength by employing aqueous solutions of polyvinyl alcohol (PVA), a biocompatible and biodegradable synthetic polymer; gelatin (GEL), a natural polymer that offers binding sites conducive to cell adhesion and differentiation; and synthesized bioceramics, all integrated through the electrospinning process. Composite tissue scaffolds were engineered by incorporating 1% to 3% GEL into the PVA solution, followed by the addition of 1% bioceramics to the 1% GEL-enriched PVA. The composite formulation not only emulates the extracellular matrix as a biomimetic strategy but also goes beyond merely enhancing ossification. Comprehensive structural, morphological, mechanical, and thermal characterizations were conducted to analyze the properties of the scaffolds containing the synthesized bioceramics. The tensile strengths of the fabricated nanocomposites were determined to be 6.25 MPa for 10:0 (PVA:GEL), 7.45 MPa for 10:1 (PVA:GEL), 8.01 MPa for 10:3 (PVA:GEL), and 8.22 MPa for 10:1:1 (PVA:GEL:Bioceramics), respectively, indicating a progressive enhancement in mechanical properties with the incorporation of GEL and bioceramics. The results demonstrate the successful production of a potential biomaterial with ideal properties for tissue engineering applications. These composite scaffolds, providing a conducive environment for cell adhesion and exhibiting excellent mechanical properties, are anticipated to be suitable for dental applications as an intermediate layer which may support bone and connective tissue formation. 

References

Altan, D., Özarslan, A. C., Özel, C., Tuzlakoğlu, K., Sahin, Y. M., & Yücel, S. (2024). Fabrication of electrospun double layered biomimetic collagen–chitosan polymeric membranes with zinc-doped mesoporous bioactive glass additives. Polymers, 16(14), 2066–2084. https://doi.org/10.3390/polym16142066

Aydogdu, M. O., Mutlu, B., Kurt, M., Inan, A. T., Kuruca, S. E., Erdemir, G., Sahin, Y.M., Ekren, N., Oktar, F.N., & Gunduz, O. (2019). Developments of 3D polycaprolactone/beta-tricalcium phosphate/collagen scaffolds for hard tissue engineering. Journal of the Australian Ceramic Society, 55, 849-855. https://doi.org/10.1007/s41779-018-00299-y

Ba Linh, N. T., Lee, K. H., & Lee, B. T. (2013). Functional nanofiber mat of polyvinyl alcohol/gelatin containing nanoparticles of biphasic calcium phosphate for bone regeneration in rat calvaria defects. Journal of Biomedical Materials Research Part A, 101(8), 2412–2423. https://doi.org/10.1002/jbm.a.34533

Biesuz, M., Galotta, A., Motta, A., Kermani, S., Grasso, J., Vontorová, V., Tyrpekl, M., Vilémová, M., & Sglavo, V. M. (2021). Speedy bioceramics: Rapid densification of tricalcium phosphate by ultrafast high-temperature sintering. Materials Science and Engineering: C, 127, 112246. https://doi.org/10.1016/j.msec.2021.112246

Buluş, E. (2017). Doğal izole edilmiş biyoseramiklerden elektrospinning yöntemi ile polimerik biyokompozit malzeme eldesi (Master’s thesis, Fen Bilimleri Enstitüsü).

Bulus, E., Sakarya Bulus, G., & Sahin, Y. M. (2020). Production and characterization of nanotechnological tape for wounds caused by diabetes. Journal of Materials and Electronic Devices, 5(1), 20–24.

Cam, M. E., Cesur, S., Taskin, T., Erdemir, G., Kuruca, D. S., Sahin, Y. M., Kabasakal, L., & Gunduz, O. (2019). Fabrication, characterization and fibroblast proliferative activity of electrospun Achillea lycaonica-loaded nanofibrous mats. European Polymer Journal, 120, 109239. https://doi.org/10.1016/j.eurpolymj.2019.109239

Filippi, M., Born, G., Chaaban, M., & Scherberich, A. (2020). Natural polymeric scaffolds in bone regeneration. Frontiers in Bioengineering and Biotechnology, 8, 474. https://doi.org/10.3389/fbioe.2020.00474

Gautam, S., Sharma, C., Purohit, S. D., Singh, H., Dinda, A. K., Potdar, C. F., Chou, P. D., & Mishra, N. C. (2021). Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering. Materials Science and Engineering: C, 119, 111588. https://doi.org/10.1016/j.msec.2020.111588

Gunduz, O., Sahin, Y. M., Agathopoulos, S., Ağaoğulları, H., Gökçe, E. S., Kayali, C., Aktas, B., Ben-Nissan, B., & Oktar, F. N. (2013). Nano calcium phosphate powder production through chemical agitation from Atlantic deer cowrie shells (Cypraea cervus Linnaeus). Key Engineering Materials, 587, 80–85. https://doi.org/10.4028/www.scientific.net/KEM.587.80

Hernández, G. R., Valdez, H. A., Arango-Ospina, M., Delgado, J. F., Aguilar-Rabiela, A. E., Gorgojo, J. P., Zhang, H., Beltrán, A.M., Boccaccini, A.R., & Sánchez, M. L. (2024). PVA-gelatine based hydrogel loaded with astaxanthin and mesoporous bioactive glass nanoparticles for wound healing. Journal of drug delivery science and technology, 101, 106235. https://doi.org/10.1016/j.jddst.2024.106235

Hejazi, F., Bagheri‐Khoulenjani, S., Olov, D., Zeini, A., Solouk, A., & Mirzadeh, H. (2021). Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration. Journal of Biomedical Materials Research Part A, 109(9), 1657–1669. https://doi.org/10.1002/jbm.a.37161

Heydary, H. A., Karamian, E., Poorazizi, E., Heydaripour, J., & Khandan, A. (2015). Electrospun of polymer/bioceramic nanocomposite as a new soft tissue for biomedical applications. Journal of Asian Ceramic Societies, 3(4), 417–425. https://doi.org/10.1016/j.jascer.2015.09.003

Hong, J., Yeo, M., Yang, G. H., & Kim, G. H. (2019). Cell-electrospinning and its application for tissue engineering. International Journal of Molecular Sciences, 20(24), 6208. https://doi.org/10.3390/ijms20246208

Hoque, M. E., Sakinah, N., Chuan, Y. L., & Ansari, M. N. M. (2014). Synthesis and characterization of hydroxyapatite bioceramic. International Journal of Scientific Engineering and Technology, 3(5), 458–462.

Howard, D., Buttery, L. D., Shakesheff, K. M., & Roberts, S. J. (2008). Tissue engineering: Strategies, stem cells and scaffolds. Journal of Anatomy, 213(1), 66–72. https://doi.org/10.1111/j.1469-7580.2008.00878.x

Jazayeri, H. E., Lee, S.-M., Kuhn, L., Fahimipour, F., Tahriri, M., & Tayebi, L. (2020). Polymeric scaffolds for dental pulp tissue engineering: A review. Dental Materials, 36(2), e1–e10. https://doi.org/10.1016/j.dental.2019.11.005

Keçeciler‐Emir, C., Başaran‐Elalmiş, Y. M., Şahin, Y., Buluş, E., & Yücel, S. (2023). Fabrication and characterization of chlorhexidine gluconate loaded poly (vinyl alcohol)/45S5 nano‐bioactive glass nanofibrous membrane for guided tissue regeneration applications. Biopolymers, 114(10), e23562. https://doi.org/10.1002/bip.23562

Linh, N. T., Min, Y. K., Song, H. Y., & Lee, B. T. (2010). Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 95(1), 184–191. https://doi.org/10.1002/jbm.b.31701

Mazumder, S., Nayak, A. K., Ara, T. J., & Hasnain, M. S. (2019). Hydroxyapatite composites for dentistry. In Applications of Nanocomposite Materials in Dentistry (pp. 123–143). https://doi.org/10.1016/B978-0-12-813742-0.00007-9

Perez-Puyana, V., Jiménez-Rosado, M., Romero, A., & Guerrero, A. (2018). Development of PVA/gelatin nanofibrous scaffolds for tissue engineering via electrospinning. Materials Research Express, 5(3), 035401. https://doi.org/10.1088/2053-1591/aab164

Razzaq, A., Khan, Z. U., Saeed, A., Shah, K. A., Khan, N. U., Menaa, B., Iqbal, H., & Menaa, F. (2021). Development of cephradine-loaded gelatin/polyvinyl alcohol electrospun nanofibers for effective diabetic wound healing: In vitro and in vivo assessments. Pharmaceutics, 13(3), 349. https://doi.org/10.3390/pharmaceutics13030349

Sadeghi, A., Pezeshki-Modaress, M., & Zandi, M. (2018). Electrospun polyvinyl alcohol/gelatin/chondroitin sulfate nanofibrous scaffold: Fabrication and in vitro evaluation. International Journal of Biological Macromolecules, 114, 1248–1256. https://doi.org/10.1016/j.ijbiomac.2018.04.002

Sahin, Y. M. (2019). Natural nanohydroxyapatite synthesis via ultrasonication from Donax trunculus bivalve sea shells and production of its electrospun nanobiocomposite. Acta Physica Polonica A, 135(5), 1093–1096. https://doi.org/10.12693/APhysPolA.135.1093

Sahin, Y. M., Orman, Z., & Yucel, S. (2018). In vitro studies of α-TCP and β-TCP produced from Clinocardium ciliatum seashells. Journal of the Australian Ceramic Society, 56, 477–488. https://doi.org/10.1007/s41779-019-00355-1

Şahin, Y. M., Orman, Z., & Yücel, S. (2018). A simple chemical method for conversion of Turritella terebra sea snail into nanobioceramics. Journal of Ceramic Processing Research,19(6),492-498. ISSN: 1229-9162

Santhosh, S., & Balasivanandha Prabu, S. (2013). Thermal stability of nano hydroxyapatite synthesized from sea shells through wet chemical synthesis. Materials Letters, 97, 121–124. https://doi.org/10.1016/j.matlet.2013.01.081

Sengor, M., Ozgun, A., Corapcioglu, G., Ipekoglu, M., Garipcan, B., Ersoy, N., & Altintas, S. (2018). Core-shell PVA/gelatin nanofibrous scaffolds using co-solvent, aqueous electrospinning: Toward a green approach. Journal of Applied Polymer Science, 135(32), 46582. https://doi.org/10.1002/app.46582

Song, W., Markel, D. C., Wang, T., Shi, G., Mao, T., & Ren, W. (2012). Electrospun polyvinyl alcohol–collagen–hydroxyapatite nanofibers: A biomimetic extracellular matrix for osteoblastic cells. Nanotechnology, 23(11), 115101. https://doi.org/10.1088/0957-4484/23/11/115101

Tüzün, E. (2023). Synthesis of novel antioxidant carboxymethylcellulose nanocomposites for Cu–Ni–Mo-based steel foams. Cellulose, 30(14), 8753-8768. https://doi.org/10.1007/s10570-023-05436-w

Qiao, K., Zheng, Y., Guo, S., Tan, J., Chen, X., Li, J., Xu, D., & Wang, J. (2015). Hydrophilic nanofiber of bacterial cellulose guided the changes in the micro-structure and mechanical properties of nf-BC/PVA composites hydrogels. Composites science and technology, 118, 47-54. https://doi.org/10.1016/j.compscitech.2015.08.004

Xie, W., Fu, X., Tang, F., Mo, Y., Cheng, J., Wang, H., & Chen, X. (2019). Dose-dependent modulation effects of bioactive glass particles on macrophages and diabetic wound healing. Journal of Materials Chemistry B, 7(6), 940–952. https://doi.org/10.1039/C8TB02938E

Yelten-Yilmaz, A., & Yilmaz, S. (2010). Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceramics International, 44(8), 9703–9710. https://doi.org/10.1016/j.ceramint.2018.02.201

Zhang, H., Xiong, Y., Dong, L., & Li, X. (2021). Development of hierarchical porous bioceramic scaffolds with controlled micro/nano surface topography for accelerating bone regeneration. Materials Science and Engineering: C, 130, 112437. https://doi.org/10.1016/j.msec.2021.112437

Zou, Y., Zhang, L., Yang, F., Zhu, M., Ding, F., Lin, Z., Wang, Z., & Li, Y. (2018). ‘Click’ chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. Journal of Controlled Release, 273, 160–179. https://doi.org/10.1016/j.jconrel.2018.01.023

Downloads

Published

2025-03-15

How to Cite

Sahin, S. N., Bulus, E., Tezcan, A., Farooq , M. U., Al-garash, M., & Sahin, Y. M. (2025). Seashell-based bioceramics for advanced electrospun tissue scaffolds. The European Chemistry and Biotechnology Journal, (4), 1–13. https://doi.org/10.62063/ecb-49

Issue

Section

Research Articles