Online first

Dual role of natural molecules in bridging cancer and Alzheimer’s disease: insights from in silico simulations


Abstract views: 129 / PDF downloads: 38

Authors

DOI:

https://doi.org/10.62063/ecb-39

Keywords:

breast cancer, Queuine, Galantamine, molecular docking, virtual screening

Abstract

Cancer and Alzheimer's disease (AD) present significant socioeconomic challenges and remain without definitive cures. Existing chemotherapeutic and anti-Alzheimer drugs approved by the FDA offer limited efficacy and carry notable side effects, underscoring the need for safer, more effective therapies. Our research group has recently focused on identifying natural molecules to treat AD by targeting acetylcholinesterase. Building on this, the current study expands our approach through virtual screening of DrugBank and Zinc databases to discover natural compounds that inhibit Estrogen Receptor Alpha (ERα) for breast cancer treatment. Molecular docking and drugability analyzes identified four promising compounds: Queuine, Thiamine, Galantamine, and Folic Acid. The docking scores for Galantamine, Thiamine, Queuine, and Folic Acid were -8.8, -8.3, -8.0, and -7.5 kcal/mol, respectively. These molecules demonstrate interactions with key residues in the ERα binding site such as Glu 353 and Phe 404 through hydrogen bonding and pi-pi stacking. Similar interactions are also maintained in the FDA-approved selective Estrogen Receptor Modulators, Raloxifene and Tamoxifen. ADMET analysis indicated that these natural molecules possess favorable drug-like properties and offer a safety advantage, as they are less likely to induce deep vein thrombosis or pulmonary embolism, which are the serious side effects commonly associated with Raloxifene and Tamoxifen. A thorough literature review further highlights these compounds' neuroprotective effects, suggesting they could serve as dual-purpose therapeutics to address both cancer and AD, paving the way for integrated treatment strategies.

 

References

Aytac, U., & Gündüz, U. (1994). Q-modification of tRNAs in human brain tumors. Cancer biochemistry biophysics, 14(2), 93-98.

Bailey, L. B. (2009). Folate in health and disease. CRC Press, 2nd edition, Boca Raton, USA. ISBN, 9780429150012. https://doi.org/10.1201/9781420071252

Baranowski, W., Dirheimer, G., Jakowicki, J.A., & Keith, G. (1994). Deficiency of Queuine, a highly modified purine base, in transfer RNAs from primary and metastatic ovarian malignant tumors in women. Cancer research, 54(16), 4468-4471.

Breijyeh, Z., & Karaman, R. (2020). Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 25(24), 5789. https://doi.org/10.3390/molecules25245789.

Bruce, W.R., Furrer, R., Shangari, N., O'Brien, P.J., Medline, A., & Wang, Y. (2003). Marginal dietary thiamin deficiency induces the formation of colonic aberrant crypt foci (ACF) in rats. Cancer letters, 202(2), 125-129. https://doi.org/10.1016/j.canlet.2003.08.005

Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P.W., & Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of chemical information and modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a

Comín‐Anduix, B., Boren, J., Martinez, S., Moro, C., Centelles, J.J., Trebukhina, R., & Cascante, M. (2001). The effect of thiamine supplementation on tumor proliferation: A metabolic control analysis study. European journal of biochemistry, 268(15), 4177-4182. https://doi.org/10.1046/j.1432-1327.2001.02329.x

Cummings, S.R., Eckert, S., & Krueger, K.A. et al. (1999). The effect of raloxifene on the risk of breast cancer in postmenopausal women: Results from the Multiple Outcomes of Raloxifene Evaluation (MORE) trial. Journal of the american medical association, 281(23), 2189-2197. https://doi.org/10.1001/jama.281.23.2189

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 42717. https://doi.org/10.1038/srep42717

Deal, C.L., & Draper, M.W. (2006). Raloxifene: a selective estrogen-receptor modulator for postmenopausal osteoporosis - a clinical update on efficacy and safety. Women's health (London, England), 2(2), 199–210. https://doi.org/10.2217/17455057.2.2.199

Driver, J.A., Beiser, A., Au, R., Kreger, B.E., Splansky, G.L., Kurth, T., Kiel, D.P., Lu, K.P., Seshadri, S., & Wolf, P.A. (2012). Inverse association between cancer and Alzheimer’s disease: Results from the Framingham Heart Study. BMJ, 344, e1442. https://doi.org/10.1136/bmj.e1442

Fergus, C., Barnes, D., Alqasem, M.A., & Kelly, V.P. (2015). The Queuine micronutrient: Charting a course from microbe to man. Nutrients, 7(4), 2897–2929. https://doi.org/10.3390/nu7042897

Girgin, M., & Kantarci-Carsibasi, N. (2023). Queuine as a potential multi-target drug for alzheimer’s disease: insights from protein dynamics. Journal of biomolecular structure and dynamics, 1-22. https://doi.org/10.1080/07391102.2023.2293262

Girgin, M., Isik, S., & Kantarci-Carsibasi, N. (2023). Proposing novel natural compounds against Alzheimer’s disease targeting acetylcholinesterase. Plos one, 18(4), e0284994. https://doi.org/10.1371/journal.pone.0284994

Glaser, R., & Dimitrakakis, C. (2015). Testosterone and breast cancer prevention. Maturitas, 82(3), 291-295. https://doi.org/10.1016/j.maturitas.2015.06.002

Huang, B.S., Wu, R.T., & Chien, K.Y. (1992). Relationship of the Queuine content of transfer ribonucleic acids to histopathological grading and survival in human lung cancer. Cancer research, 52(17), 4696-4700.

Iimura, Y., Andoh, S., Kawamata, T., Sato, A., Yokoyama, K., Imai, Y., Tojo, A., Nojima, M., Sugiura, M., & Kuroda, S. (2021). Thiamine deficiency and neurological symptoms in patients with hematological cancer receiving chemotherapy: A retrospective analysis. Journal of neurosciences in rural practice, 12(4), 726. https://doi.org/10.1055/s-0041-1735825

İnce, A.T., Karabağ, D.D.F., & Bulduk, İ. (2023). Investigation of antiangiogenic and apoptotic effects of galantamine obtained from Leucojum aestivum on MCF-7 breast cancer cell line. Kocatepe medical journal, 24(4), 457-465. https://doi.org/10.18229/kocatepetip.1178657

Jordan, V.C. (2003). Tamoxifen: A most unlikely pioneering medicine. Nature reviews drug discovery, 2(3), 205-213. https://doi.org/10.1038/nrd1031

Jordan, V.C. (2006). Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. British journal of pharmacology, 147(S1), S269-S276. https://doi.org/10.1038/sj.bjp.0706399

Jorgensen, W.L., & Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the american chemical society, 110(6), 1657-1666. https://doi.org/10.1021/ja00214a001

Keenan, T.E., Haffty, B.G., & Rugo, H.S. (2019). The role of estrogen receptor in breast cancer: Mechanisms and therapeutic strategies. Current opinion in oncology, 31(6), 459-467. https://doi.org/10.1097/CCO.0000000000000550.

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A., Thiessen, P.A., Yu, B., Zaslavsky, L., Zhang, J., & Boltonet, E.E. (2023). Nucleic acids research, 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956

Kisla, M.M., Yaman, M., Zengin-Karadayi, F., Korkmaz, B., Bayazeid, O., Kumar, A., Peravali, R., Gunes, D., Tiryaki, R.S., Gelinci, E., Cakan-Akdogan, G., Ates-Alagoz, Z., & Konu, O. (2024). Synthesis and Structure of Novel Phenothiazine Derivatives, and Compound Prioritization via In Silico Target Search and Screening for Cytotoxic and Cholinesterase Modulatory Activities in Liver Cancer Cells and In Vivo in Zebrafish. ACS omega, 9(28), 30594-30614. https://doi.org/10.1021/acsomega.3c06532

Kumar, V., & Kumar, A. (2018). Estrogen receptor signaling in breast cancer: The role of estrogen receptor alpha and beta in cancer initiation and progression. Oncology letters, 16(5), 5376-5384. https://doi.org/10.3892/ol.2018.9308

Li, R., Peng, L., Deng, D., Li, G., & Wu, S. (2024). Causal relationship between Alzheimer’s disease and prostate cancer: a bidirectional Mendelian randomization analysis. Frontiers in endocrinology, 15, 1354528. https://doi.org/10.3389/fendo.2024.1442603

Li, Y., Xu, X., Wang, P., Chen, X., Yang, Q., Sun, L., & Gao, X. (2024). Association of Cancer History with Lifetime Risk of Dementia and Alzheimer’s Disease. Journal of alzheimer's disease, (Preprint), 1-10. https://doi.org/10.3233/JAD-231223

Liu, X., Montissol, S., Uber, A., Ganley, S., Grossestreuer, A.V., Berg, K., & Donnino, M.W. (2018). The effects of thiamine on breast cancer cells. Molecules, 23(6), 1464. https://doi.org/10.3390/molecules23061464

Madhavi-Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of computer-aided molecular design, 27, 221-234. https://doi.org/10.1007/s10822-013-9644-8

Mason, K.A., Schoelwer, M.J., & Rogol, A.D. (2020). Androgens During Infancy, Childhood, and Adolescence: Physiology and Use in Clinical Practice. Endocrine Reviews, 41 (3), bnaa003. https://doi.org/10.1210/endrev/bnaa003

Qin, X., Cui, Y., Shen, L., Sun, N., Zhang, Y., Li, J., Xu, X., Wang, B., Xu, X., Huo, Y., & Wang, X. (2013). Folic acid supplementation and cancer risk: A meta‐analysis of randomized controlled trials. International journal of cancer, 133(5), 1033-1041. https://doi.org/10.1002/ijc.28038

Schrödinger 2018. Maestro(version2018–4) New York, NY:Schrödinger, LLC.

Shafi, O. (2016). Inverse relationship between Alzheimer’s disease and cancer, and other factors contributing to Alzheimer’s disease: a systematic review. BMC neurology, 16, 1-17. https://doi.org/10.1186/s12883-016-0765-2

Shelley, J.C., Cholleti, A., Frye, L.L., Greenwood, J.R., Timlin, M.R., & Uchimaya, M. (2007). Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. Journal of computer-aided molecular design, 21, 681-691. https://doi.org/10.1007/s10822-007-9133-z

Sterling, T. & Irwin, J.J. (2015). Zinc database of pharmacologically active compounds. Journal of chemical information and modeling, 55(11), 2324-2337. https://doi.org/10.1021/acs.jcim.5b00559

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249. https://doi.org/10.3322/caac.21660

Tariot, P.N., Solomon, P.R., Morris, J.C., Kershaw, P., Lilienfeld, S., & Ding, C. (2000). A randomized, double-blind, placebo-controlled study of the efficacy and safety of galantamine in patients with Alzheimer’s disease. Neurology, 54(12), 2269-2276. https://doi.org/10.1212/WNL.54.12.2269

Tetko, I.V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., Palyulin, V.A., Radchenko, E.V., Zefirov, N.S., & Makarenko, A.S. (2005). Virtual computational chemistry laboratory–Design and description. Journal of computer-aided molecular design, 19, 453–463. https://doi.org/10.1007/s10822-005-8694-y

Tylicki, A., Łotowski, Z., Siemieniuk, M., & Ratkiewicz, A. (2018). Thiamine and selected thiamine antivitamins—Biological activity and methods of synthesis. Bioscience reports, 38(1), BSR20171148. https://doi.org/10.1042/BSR20171148

Wang, J., Sims, K.D., Ackley, S.F., Chen, R., Kobayashi, L.C., Hayes‐Larson, E., Mayeda, E.R., Buto, P., Zimmerman, S.C., Graff, R.E., & Glymour, M. M. (2024). Association of cancer history with structural brain aging markers of Alzheimer's disease and related dementias risk. Alzheimer's & dementia, 20(2), 880-889. https://doi.org/10.1002/alz.13497

Weigel, N.L., & Moore, K.N. (2010). The role of estrogen receptor alpha in breast cancer. Nature reviews cancer, 10(6), 373-378. https://doi.org/10.1038/nrc2846

Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., & Woolsey, J. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic acids research, 34(Database issue), D668–D672. https://doi.org/10.1093/nar/gkj067

Yuan, C., Liu, S., Yang, K., Xie, F., Li, Y., Guo, Y., Zhao, W., Zhang, J., & Cheng, Z. (2024). Causal association between colorectal cancer and Alzheimer’s disease: a bidirectional two-sample mendelian randomization study. Frontiers in genetics, 14, 1180905. https://doi.org/10.3389/fgene.2023.1180905

Downloads

Published

2024-11-22

How to Cite

Kantarci-Carsibasi, N., & Girgin, M. (2024). Dual role of natural molecules in bridging cancer and Alzheimer’s disease: insights from in silico simulations. The European Chemistry and Biotechnology Journal, (3), 32–46. https://doi.org/10.62063/ecb-39

Issue

Section

Research Articles