Entrapment of protease from Bacillus sp. in polyvinyl alcohol hydrogels
Abstract views: 131 / PDF downloads: 10
DOI:
https://doi.org/10.62063/ecb-38Keywords:
Bacillus sp., immobilization, polyvinyl alcohol, proteaseAbstract
This study highlights the effective immobilization of protease from Bacillus sp. in polyvinyl alcohol hydrogels and its characterization. Both free and entrapped proteases exhibited optimal activity at pH 8.0 and 55°C, indicating that the immobilization did not significantly alter the enzyme's fundamental properties. The entrapment in polyvinyl alcohol hydrogels significantly enhanced thermal stability. After 24 hours at 55°C, the free protease retained only 19% of its initial activity, whereas the entrapped protease retained 72%. The entrapped protease showed a longer half-life of 53.3 hours compared to 10.6 hours for the free protease. The Km and Vmax values of free protease were determined to be 0.5 mg/mL and 23.3 U/mg protein, respectively, for casein. These values were found to be 0.2 mg/mL and 23.8 U/mg protein, respectively for the entrapped protease. The entrapped protease retained 58% of its initial activity after 5 reuses in a batch reactor. As a result, the entrapment of Bacillus sp. protease in polyvinyl alcohol is an effective immobilization method due to its simplicity, low cost, and ability to provide a 5-fold increase in thermal stability.
References
Abdella, M. A. A, Ahmed, S. A., & Hassan, M. E. (2023). Protease immobilization on a novel activated carrier alginate/dextrose beads: Improved stability and catalytic activity via covalent binding. International journal of biological macromolecules, 230, 123139. https://doi.org/10.1016/j.ijbiomac.2023.123139
Adetunji, A. I., & Olaniran, A. O. (2023). Biocatalytic profiling of free and immobilized partially purified alkaline protease from an autochthonous Bacillus aryabhattai Ab15-ES. Reactions, 4(2), 231-245. https://doi.org/10.3390/reactions4020013
Alagöz, D., Varan, N. E., Toprak, A., Tükel, S. S., & Yildirim, D. (2022). Immobilization of ene reductase in polyvinyl alcohol hydrogel. Protein journal, 41, 394–402. https://doi.org/10.1007/s10930-022-10059-4
Anwar, A., Qader, S. A. U., Raiz, A., Iqbal, S., & Azhar, A. (2009). Calcium alginate: A support material for immobilization of proteases from newly isolated strain of Bacillus subtilis KIBGE-HAS. World applied sciences journal, 7(10),1281-1286.
Brandelli, A., & Daroit, D. J. (2024). Unconventional microbial proteases as promising tools for the production ofbioactive protein hydrolysates. Critical reviews in food science & nutrition, 64(14), 4714-4745. https://doi.org/10.1080/10408398.2022.2145262
Duman, Y. A., & Tekin, N. (2020). Kinetic and thermodynamic properties of purified alkaline protease from Bacillus pumilus Y7 and non-covalent immobilization to poly(vinylimidazole)/clay hydrogel. Engineering in life sciences, 20, 36-49. https://doi.org/10.1002/elsc.201900119
Dyer, R. P., & Weiss, G. A. (2022). Making the cut with protease engineering. Cell chemical biology, 29(2), 177-190. https://doi.org/10.1016/j.chembiol.2021.12.001
Elbira, A., Hafiz, M., Hernández-Álvarez, A. J., Zulyniak, M. A., & Boesch, C. (2024). Protein hydrolysates and bioactive peptides as mediators of blood glucose-A systematic review and meta-analysis of acute and long-term studies. Nutrients, 16(2), 323. https://doi.org/10.3390/nu16020323
El-Shazly, A. I., Wahba, M. I., Abdelwahed, N. A. M., & Shehata, A. N. (2024). Immobilization of alkaline protease produced by Streptomyces rochei strain NAM-19 in solid state fermentation based on medium optimization using central composite design. 3 Biotech, 14, 161. https://doi.org/10.1007/s13205-024-04003-9
Ferreira, L., Ramos, M. A., Dordick, J. S., & Gil, M. H. (2003). Influence of different silica derivatives in the immobilization and stabilization of a Bacillus licheniformis protease (Subtilisin Carlsberg). Journal of molecular catalysis b: Enzymatic, 21, 189-199. https://doi.org/10.1016/S1381-1177(02)00223-0
Fernandes, P., Marques, M. P. C., Carvalho, F., & Cabral, J. M. S. (2009), A simple method for biocatalyst immobilization using PVA-based hydrogel particles. Journal of chemical technology & biotechnology, 84, 561-564. https://doi.org/10.1016/S1381-1177(02)00223-0
Katić, K., Banjanac, K., Simović, M., Veljković, M., Ćorović, M., Denić, L., Zakić, T., Kralj, S., & Bezbradica, D. (2024). Nanobiocatalyst based on covalent immobilization of proteases onto functionalized nanocellulose for efficient production of sunflower meal protein hydrolysates. Food bioscience, 61, 104590. https://doi.org/10.1016/j.fbio.2024.104590
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of biological chemistry,193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
Nakashima, K., Maruyama, T., Kamiya, N., & Goto, M. (2006). Homogeneous enzymatic reactions in ionic liquids with poly(ethylene glycol)-modified subtilisin. Organic & biomolecular chemistry, 4, 3462-3467. https://doi.org/10.1039/b608920h
Ramalho, E. X., & de Castro, R. J. S. (2023). Covalent bonding immobilization of a Bacillus licheniformis protease on chitosan and its application in protein hydrolysis. Biocatalysis & agricultural biotechnology, 50, 102713. https://doi.org/10.1016/j.bcab.2023.102713
Santos, M. P. F., de Souza Junior, E. C., Villadóniga, C., Vallés, D., Castro-Sowinski., S., Bonomo, R. C. F., & Veloso, C. M. (2024). Proteases: Importance, immobilization protocols, potential of activated carbon as support, and the importance of modifying supports for immobilization. Biotech, 13(2), 13. https://doi.org/10.3390/biotech13020013
Sinha, R., & Khare, S. K. (2015). Immobilization of halophilic Bacillus sp. EMB9 protease on functionalized silica nanoparticles and application in whey protein hydrolysis. Bioprocess & biosystems engineering, 38, 739-748. https://doi.org/10.1007/s00449-014-1314-2
Sun, W., Shahrajabian, M. H., Kuang, Y., & Wang, N. (2024). Amino acids biostimulants and protein hydrolysates in agricultural sciences. Plants, 13(2), 210. https://doi.org/10.3390/plants13020210
Tang, T., Wu, N., Tang, S., Xiao, N., Jiang, Y., Tu, Y., & Xu, M. (2023). Industrial application of protein hydrolysates in food. Journal of agricultural & food chemistry, 71(4), 1788-1801. https://doi.org/10.1021/acs.jafc.2c06957
Thakrar, F. J., & Singh, S. P. (2019). Catalytic, thermodynamic and structural properties of an immobilized and highly thermostable alkaline protease from a haloalkaliphilic actinobacteria, Nocardiopsis alba TATA-5. Bioresource technology, 278, 150-158. https://doi.org/10.1016/j.biortech.2019.01.058
Toprak, A., Tükel, S. S., & Yildirim, D. (2021). Stabilization of multimeric nitrilase via different immobilization techniques for hydrolysis of acrylonitrile to acrylic acid. Biocatalysis & biotransformation, 39(3), 221–231. https://doi.org/10.1080/10242422.2020.1869217
Tülek, A., Yıldırım, D., Aydın, D., & Binay, B. (2021). Highly-stable Madurella mycetomatis laccase immobilized in silica-coated ZIF-8 nanocomposites for environmentally friendly cotton bleaching process. Colloids & surfaces b: Biointerfaces, 202, 111672. https://doi.org/10.1016/j.colsurfb.2021.111672
Ungaro, V. A., Fairbanks, J. P. A., Rossi, L. M., & Machini, M. T. (2024). Fe3O4@silica-thermolysin: A robust, advantageous, and reusable microbial nanobiocatalyst for proteolysis and milk-clotting. International journal of biological macromolecules, 278(1), 134503. https://doi.org/10.1016/j.ijbiomac.2024.134503
Wahba, M. I. (2022). Gum tragacanth for immobilization of Bacillus licheniformis protease: Optimization, thermodynamics and application. Reactive & functional polymers, 179, 105366. https://doi.org/10.1016/j.reactfunctpolym.2022.105366
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.