Investigation of antiproliferative and antimicrobial activities of carbon nanofiber based aerogels loaded with rutin and krill oil
Abstract views: 300 / PDF downloads: 163
DOI:
https://doi.org/10.62063/ecb-29Keywords:
Aerogel, antimicrobial effects, cancer, carbon nanofiber, krill oilAbstract
Cancer, the second-leading cause of death worldwide after cardiovascular diseases, is a deadly disease caused by numerous mutations that affect cell growth and differentiation. While there is no definitive cure for cancer yet, new target molecules are being identified with the help of developing technology, and appropriate treatment protocols are being developed. Since both normal and malignant cells are exposed to cytotoxic effects in traditional treatment methods, the development of less-side-effect and targeted treatment methods has become important. With the development of nanotechnology, the development of various nanodrug delivery systems (DDSs) has been targeted. In our study, we investigated the antiproliferative and antimicrobial activities of rutin-modified carbon nanofiber (ACNFr)-based aerogels loaded with krill oil (KO) (ACNFr-KO). Our results showed that ACNFr-KO aerogels were observed to have a significant anti-proliferative effect on the human breast cancer cell line MCF-7. In addition to this, ACNFr-KO aerogels were found to have antimicrobial activity against the gram-positive bacterium E. faecalis ATCC 29212. The results of our study suggest that rutin-modified CNF-based aerogels loaded with KO, which act as a DDS, have the potential to enhance targeted drug delivery and improve therapeutic outcomes in biomedical applications.
References
Agrawal, PK., Agrawal, C., & Blunden, G. (2021). Rutin: a potential antiviral for repurposing as a SARS-CoV-2 main protease (mpro) inhibitor. Natural product communications, 16(4), 1–12. https://doi.org/10.1177/1934578X21991723
Ardila, C.M., Jiménez-Arbeláez, G.A., & Vivares-Builes, A.M.(2023). The Potential Clinical Applications of a Microfluidic Lab-on-a-Chip for the Identification and Antibiotic Susceptibility Testing of Enterococcus faecalis-Associated Endodontic Infections: A Systematic Review. Dentistry journal, 12(1), 5,12(1). https://doi.org/https://doi.org/10.3390/dj12010005
Balouiri, M., Sadiki, M., & Ibnsouda, S.K. (2016). Methods for in Vitro Evaluating Antimicrobial Activity: A Review. Journal of pharmaceutical analysis, 6, 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
Beekman, A.C., Barentsen, A.R., Woerdenbag, H.J., Van Uden, W., Pras, N., Konings, A.W., el-Feraly, F. S., Galal, A.M., & Wikström, H. V. (1997). Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. Journal of natural products, 60(4), 325–330. https://doi.org/10.1021/np9605495
Berkow, E. L., Lockhart, S. R., & Ostrosky-Zeichner, L. (2020). Antifungal Susceptibility Testing: Current Approaches. Clinical microbiology reviews, 33(3), e00069-19. https://doi.org/10.1128/CMR.00069-19
Bingol Ozakpinar, O., Havva, D., Gurboga, M., Sayin, F.S., Ozsavci, D., & Caliskan Salihi, E. (2023). Carbon Nanofiber—Sodium Alginate Composite Aerogels Loaded with Vitamin D: The Cytotoxic and Apoptotic Effects on Colon Cancer Cells. Gels, 9(7), 561. https://doi.org/10.3390/gels9070561
Calışkan Salihi, E., Wang, J., Kabacaoğlu, G., Kırkulak, S., & Šiller, L. (2021). Graphene oxide as a new generation adsorbent for the removal of antibiotics from waters. Separation science and technology, 56(3), 453–461. https://doi.org/10.1080/01496395.2020.1717533
Choi, S.J., Lee, S.N., Kim, K., Joo, daH., Shin, S., Lee, J., Lee, H.K., Kim, J., Kwon, S.B., Kim, M.J., Ahn, K.J., An, I.S., An, S., & Cha, H.J. (2016). Biological effects of rutin on skin aging. International journal of molecular medicine, 38(1), 357–363. https://doi.org/10.3892/ijmm.2016.2604
Choi, S.-S., Park, H.-R., & Lee, K.-A. (2021). A Comparative Study of Rutin and Rutin Glycoside: Antioxidant Activity, Anti-Inflammatory Effect, Effect on Platelet Aggregation and Blood Coagulation. Antioxidants, 10(11), 1696. https://doi.org/10.3390/antiox10111696
Clinical and Laboratory Standards Institute (CLSI). (2012). Reference Method for Broth Dilution Antifungal Susceptbility Testing of Yeasts; 4th Informational Supplement, M27-S4. CLSI, Wayne PA, USA.
Clinical and Laboratory Standards Institute (CLSI). (2020). Performance Standarts for Antimicrobial Susceptibility Testing. 30th Ed, January CLSI supplement M100 Wayne, PA: Clinical and Laboratory Standarts Institu.
Demirhan, K., Bingol Ozakpinar, O., & Salihi, E.C. (2021). Green and one step modification of graphene oxide using natural substances. Fullerenes, nanotubes and carbon nanostructures, 29(9), 716–723. https://doi.org/10.1080/1536383X.2021.1884074
Dobrzynska, M., Napierala, M., & Florek, E. (2020). Flavonoid Nanoparticles: A Promising Approach for Cancer Therapy. Biomolecules, 10(9), 1268. https://doi.org/10.3390/biom10091268
Dolatkhah Laein, G., Safarian, S., Delasaeimarvi, S., Ahmadi, G.S., Dadfar, S., Bakhshi, E., & Rashidzade, A.R. (2023). The Use of Curcumin in the Treatment of Colorectal, Breast, Lung, and Prostate Cancers:An in vivo Study Update. Journal of lab animal research, 2(6), 72–85. https:// doi.org/10.58803/jlar.v2i6.33
Hoon, K., Youngjin, R,, Sang Yong, P., Chungil Lee, Sujin, L., Seongbin, C., Hyang-Yeol, L., Soon Auck, H., Tae Jin, L., Soon Chul, M., Seok-Joong, Y., Yung Hyun, C., Wun-Jae, K., & Sung-Kwon, M. (2022). In vitro and in vivo anti-tumor efficacy of krill oil against bladder cancer: Involvement of tumor-associated angiogenic vasculature. Food research international, 156, 111144.
https://doi. org/10.1016/j.foodres.2022.111144
Iriti, M., Kubina, R., Cochis, A., Sorrentino, R., Varoni, E.M., Kabała-Dzik, A., Azzimonti, B., Dziedzic, A., Rimondini, L., & Wojtyczka, R.D. (2017). Rutin, a Quercetin Glycoside, Restores Chemosensitivity in Human Breast Cancer Cells. Phytotherapy research, 31(10), 1529–1538. https://doi.org/10.1002/ptr.5878
Jayathilake, A.G., Kadife, E., Kuol, N., Luwor, R.B., Nurgali, K., & Su, X.Q. (2022). Krill oil supplementation reduces the growth of CT-26 orthotopic tumours in Balb/c mice. BMC complementary medicine and therapies, 22(1), 34. https://doi.org/10.1186/s12906-022-03521-4
Jayathilake, A.G., Kadife, E., Luwor, R.B., Nurgali, K., & Su, X.Q. (2019). Krill oil extract suppresses the proliferation of colorectal cancer cells through activation of caspase 3/9. Nutrition & metabolism, 16, 53. https://doi.org/10.1186/s12986-019-0382-3
Lin, J. P., Yang, J.S., Lin, J.J., Lai, K.C., Lu, H.F., Ma, C.Y., Sai-Chuen Wu, R., Wu, K.C., Chueh, F.S., Gibson Wood, W., & Chung, J.G. (2012). Rutin inhibits human leukemia tumor growth in a murine xenograft model in vivo. Environmental toxicology, 27(8), 480–484. https://doi.org/10.1002/tox.20662
Liu, Y., Robinson, A.M., Su, X.Q., & Nurgali, K. (2024). Krill Oil and Its Bioactive Components as a Potential Therapy for Inflammatory Bowel Disease: Insights from In Vivo and In Vitro Studies. Biomolecules, 14(4), 447. https://doi.org/10.3390/biom14040447
Llorens-Gámez, M., & Serrona.-Aroca, Á. (2018). Low-Cost Advanced Hydrogels of Calcium Alginate/Carbon Nanofibers with Enhanced Water Diffusion and Compression Properties. Polymers, 10(4), 405. https://doi.org/10.3390/polym10040405
Magrez, A., Kasas, S., Salicio, V., Pasquier, N., Seo, J.W., Celio, M., Catsicas, S., Schwaller, B., & Forró, L. (2006). Cellular toxicity of carbon-based nanomaterials. Nano letters, 6(6), 1121–1125. https://doi.org/10.1021/nl060162e
Manach, C., Williamson, G., Morand, C., Scalbert, A., & Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The american journal of clinical nutrition, 81(1), 230S–242S. https://doi.org/10.1093/ajcn/81.1.230S
Misra R., & Sahoo S.K. (2012). Antibacterial Activity of Doxycycline-Loaded Nanoparticles, Düzgüneş, N. Methods in Enzymology. (Ed), Academic Press, 509, pp. 61–85. https://doi.org/10.1016/B9780-12-391858-1.00004-6
Naeem, A., Yu, C., Zang, Z., Zhu, W., Deng, X., & Guan, Y. (2023). Synthesis and Evaluation of Rutin-Hydroxypropyl β-Cyclodextrin Inclusion Complexes Embedded in Xanthan Gum-Based (HPMC-g-AMPS) Hydrogels for Oral Controlled Drug Delivery. Antioxidants, 12(3), 552. https:// doi.org/10.3390/antiox12030552
Nguyen T.A., Liu B., Zhao J., Thomas D.S., & Hook J.M. (2013). An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food chemistry, 136, 186–192. https://doi.org/10.1016/j.foodchem.2012.07.104
Nishida K. (2021). Recent Advances in Lipid-Based Drug Delivery. Pharmaceutics, 13(7), 926. https://doi.org/10.3390/pharmaceutics13070926
Perez, C., P.M., & Bazerque, P. (1990). An Antibiotic Assay by the Agar-Well Diffusion Method. Acta Biologiae et Medicine Experimentails, 15, 113–115.
Putri, A.P., Picchioni, F., Harjanto, S., & Chalid, M. (2021). Alginate Modification and Lectin Conjugation Approach to Synthesize the Mucoadhesive Matrix. Applied sciences, 11(24), 11818. https://doi.org/10.3390/app112411818
Ringel, J., Erdmann, K., Hampel, S., Kraemer, K., Maier, D., Arlt, M., Kunze, D., Wirth, M. P., & Fuessel, S. (2014). Carbon nanofibers and carbon nanotubes sensitize prostate and bladder cancer cells to platinum-based chemotherapeutics. Journal of biomedical nanotechnology, 10(3), 463–477. https://doi.org/10.1166/jbn.2014.1758
Sánchez C.A.O., Zavaleta E.B., García G.R.U., Solano G.L., & Díaz M.P.R. (2021). Krill oil microencapsulation: Antioxidant activity, astaxanthin retention, encapsulation efficiency, fatty acids profile, in vitro bioaccessibility and storage stability. LWT, 147, 111476. https://doi.org/10.1016/j.lwt.2021.111476
Satari, A., Ghasemi, S., Habtemariam, S., Asgharian, S., & Lorigooini, Z. (2021). Rutin: A Flavonoid as an Effective Sensitizer for Anticancer Therapy; Insights into Multifaceted Mechanisms and Applicability for Combination Therapy. Evidence-based complementary and alternative medicine, 9913179. https://doi.org/10.1155/2021/9913179
Tariq, R., Khurshid, Z., Ahmed Farooqui, W., & Adanir, N. (2023). Anti-bacterial efficacy of Aloe vera against E. Faecalis in comparison to other intracanal medicaments: A systematic review and meta-analysis. The Saudi dental journal, 35(5), 451–467. https://doi.org/10.1016/j.sdentj.2023.05.007
Tou, J.C., Jaczynski, J., & Chen, Y.C. (2007). Krill for human consumption: nutritional value and potential health benefits. Nutrition reviews, 65(2), 63–77. https://doi.org/10.1111/j.1753-4887.2007.tb00283.x
Wang, J., Salihi, E.C., & Šiller, L. (2017). Green reduction of graphene oxide using alanine. Materials Science and Engineering: C, 72,1–6. https://doi.org/10.1016/j.msec.2016.11.017
Winther, B., Hoem, N., Berge, K., & Reubsaet, L. (2011). Elucidation of phosphatidylcholine composition in krill oil extracted from Euphausia superba. Lipids, 46(1), 25–36. https://doi.org/10.1007/s11745-010-3472-6
Youssef, S.S.M., Ibrahim, N.K., El-Sonbaty, S.M., & El-Din Ezz, M.K. (2022). Rutin Suppresses DMBA Carcinogenesis in the Breast Through Modulating IL-6/NF-κB, SRC1/HSP90 and ER-α. Natural product communications, 17(9), 1934578-. https://doi.org/10.1177/1934578X221118213
Zhang, B., Wang, Y., & Zhai, G. (2016). Biomedical applications of the graphene-based materials. Materials science and engineering: C, 61, 953–64. https://doi.org/10.1016/j.msec.2015.12.073
Zhao, J., Jiang, K., Chen, Y., Chen, J., Zheng, Y., Yu, H., & Zhu, J. (2020). Preparation and Characterization of Microemulsions Based on Antarctic Krill Oil. Marine drugs, 18(10), 492. https://doi.org/10.3390/md18100492
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.