Detecting viable but non-culturable lactic acid bacteria following spray-drying and during storage


Abstract views: 232 / PDF downloads: 73

Authors

  • Meriam Bouri Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye https://orcid.org/0000-0002-2391-8768
  • Sibel Simsek Yazici Yeditepe University R&D and Analysis Central Laboratories, Istanbul, Türkiye
  • Fikrettin Sahin Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye https://orcid.org/0000-0003-1503-5567

DOI:

https://doi.org/10.62063/ecb-20

Keywords:

microencapsulation, maltodextrin, plate count agar, probiotic bacteria, tetrazolium salt, trehalose, whey protein

Abstract

Microencapsulation with various materials has been used as an efficient method to improve the viability of probiotic bacteria in multiple food products and the human gastrointestinal tract. Although plate count agar is the most commonly used method for evaluating the viability of encapsulated bacteria, it is still far from providing reliable information about the intermediate state between viable and dead bacteria. This study optimized a tetrazolium salt-based colorimetric method for the detection of viable but non-culturable state within encapsulated Lactobacillus rhamnosus and Lactobacillus plantarum probiotic strains. The viability of encapsulated bacteria was assessed after different spray-drying conditions and also during two months of storage at room temperature. The ability to reduce tetrazolium salts of two lactic acid bacteria was verified and calibrated according to the experimental conditions (strains, incubation time, and microencapsulation material). The loss of bacterial cultivability was species-specific and more problematic throughout the processing than during the storage period. An outlet temperature of 73-75 °C yielded a higher viable but non-culturable state level than at 68-69 °C, especially in maltodextrin and trehalose powders. Whey protein was statistically the best carrier in preserving viable and culturable encapsulated bacteria after spray-drying and during storage, as compared to sugar-based carriers. The tetrazolium-optimized method was more sensitive and accurate for the evaluation of viable bacteria in microcapsules as compared to the conventional plate count methods available. It showed the high variability of CFU counts on Man–Rogosa–Sharpe (MRS) agar. This colorimetric technique could be considered a real-time, simple, cost-effective, and reliable alternative to culture-based methods in evaluating probiotic microencapsulation efficiency.

 

References

Abd El-Salam, M.H., & El-Shibiny, S. (2012). Formation and potential uses of milk proteins as nanodelivery vehicles for nutraceuticals: a review. Int. J. Dairy. Tech., 65, 13-21. https://doi.org/10.1111/j.1471-0307.2011.00737.x

Arvaniti, M., Tsakanikas, P., Papadopoulou, V., Giannakopoulou, A., & Skandamis, P. (2021). Listeria mono-cytogenes Sublethal Injury and Viable-but-Nonculturable State Induced by Acidic Conditions and Disinfectants. Microbiol Spectr. 9(3), e0137721. https://doi.org/10.1128/Spectrum.01377-21

Ayrapetyan, M., & Oliver, J.D. (2016). The viable but non-culturable state and its relevance in food safety. Curr. Op. Food. Sci., 8, 127-133. https://doi.org/10.1016/j.cofs.2016.04.010

Berridge, M.V., Herst, M.P., & Tan, A.S. (2005). Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotech. Annu. Rev., 11, 127–152. https://doi.org/10.1016/S1387-2656(05)11004-7

Bommasamudram J., Muthu A., & Devappa S. (2022). Effect of sub-lethal heat stress on viability of Lacticaseibacillus casei N in spray-dried powders, LWT, 155, 112904. https://doi.org/10.1016/j.lwt.2021.112904

Brambilla, E., Ionescu, A., Cazzaniga, G., Edefonti, V., & Gagliani, M. (2014). The influence of antibacterial toothpastes on in vitro Streptococcus mutans biofilm formation: a continuous culture study. Am. J. Dent., 27(3), 160–166.

Breeuwer, P., & Abee, T. (2005). Assessment of viability of microorganisms employing fluorescence techniques. Int. J. Food. Microbiol., 5(1-3), 193-200. https://doi.org/10.1016/S0168-1605(00)00163-X

Chávez, B.E., & Ledeboer, A.M. (2007). Drying of Probiotics: Optimization of Formulation and Process to Enhance Storage Survival. Drying Technol., 25, 1193-1201. https://doi.org/10.1080/07373930701438576

Corcoran, B.M., Ross, R.P., Fitzgerald, G.F., & Stanton, C. (2004). Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J. App. Microbiol., 96(5), 1024-1039. https://doi.org/10.1111/j.1365-2672.2004.02219.x

Doherty, S.B., Wang, L., Ross, R.P., Stanton, C., Fitzgerald, G.F., & Brodkorb, A. (2010). Use of viability staining in combination with flow cytometry for rapid viability assessment of Lactobacillus rhamnosus G.G. in complex protein matrices. J. Microbiol. Methods., 82(3), 301-310. https://doi.org/10.1016/j.mimet.2010.07.003

Espina, L., García-Gonzalo, D., & Pagán, R. (2016). Detection of thermal sublethal injury in Escherichia coli via the selective medium plating technique: mechanisms and improvements. Front. Microbiol., 7, 1376. https://doi.org/10.3389/fmicb.2016.01376

Foongladda, S., Roengsanthia, D., Arjrattanakool, W., Chuchottaworn, C., Chaiprasert, A., & Franzblau, S.G. (2002). Rapid and simple MTT method for rifampicin and isoniazid susceptibility testing of Mycobacterium tuberculosis. Int. J. Tuberc. Lung. Dis., 6, 1118–1122.

Gardiner, G.E., Bouchier, P., O’Sullivan, E., Kelly, J., Collins, J.K., Fitzgerald, G., Ross, R.P., & Catherine, S. (2002). A spray-dried cul-ture for probiotic Cheddar cheese manufacture. Int. Dairy J., 12, 749-756. https://doi.org/10.1016/S0958-6946(02)00072-9

Goderska, K., & Czarnecki, Z. (2008). Influence of microencapsulation and spray drying on the viability of Lactobacillus and Bifidobacterium strains. Pol. J. Microbiol., 57(2), 135-40.

Grela, E., Kozłowska, J., & Grabowiecka, A. (2018). Current methodology of MTT assay in bacteria a review. Acta Histochem., 120(4), 303-311. https://doi.org/10.1016/j.acthis.2018.03.007

Gueimonde, M., Tölkkö, S., Korpimäki, T., & Salminen, S. (2004). New real-time quantitative PCR procedure for quantification of bifidobacteria in human fecal samples. Appl. Environ. Microbiol., 70(7), 4165-4169. https://doi.org/10.1128/AEM.70.7.4165-4169.2004

Guerin, J., Petit, J., Burgain, J., Borges, F., Bhandari, B., Perroud, C., Desorby, S., Scher, J., & Gaiani, C. (2017). Lactobacillus rhamnosus G.G. encapsulation by spray-drying: Milk proteins clotting control to produce innovative matrices. J. Food. Eng., 193, 10-19. https://doi.org/10.1016/j.jfoodeng.2016.08.008

Gullifa, G., Risoluti, R., Mazzoni, C., Barone, L., Papa, E., Battistini, A., Martin Fraguas, R., & Materazzi, S. (2023). Microencapsulation by a Spray Drying Approach to Produce Innovative Probiotics-Based Products Extending the Shelf-Life in Non-Refrigerated Conditions. Molecules, 28, 860. https://doi.org/10.3390/molecules28020860

Heidebach, T., Först, P., & Kulozik, U. (2012). Microencapsulation of Probiotic Cells for Food Applications. Crit. Rev. Food Sci. Nutr., 52, 291–311. https://doi.org/10.1080/10408398.2010.499801

Kiekens, S., Vandenheuvel, D., Broeckx, G., Claes, I., Allonsius, C., De Boeck, I., Thys, S., Timmermans, J.P., Kiekens, F., Lebeer, S. (2019). Impact of spray-drying on the pili of Lactobacillus rhamnosus GG. Microb Biotechnol.,12(5), 849-855. https://doi.org/10.1111/1751-7915.13426

Lahtinen, S.J., Gueimonde, M., Ouwehand, A.C., Reinikainen, J.P., & Salminen, S.J. (2006). Comparison of four methods to enumerate probiotic bifidobacteria in a fermented food product. Food Microbiol., 23, 571-577. https://doi.org/10.1016/j.fm.2005.09.001

Lievense, L.C., Verbreek, M.A., Noomen, A., & Van’tRiet, K. (1994). Mechanism of dehydration inactivation of Lactobacillus planta-rum. Appl. Microbiol. Biotechnol., 41, 90-94. https://doi.org/10.1007/BF00166087

Liu, J., Li, L., Li, B., Peters, B. M., Deng, Y., Xu, Z., et al. (2017). First study on theformation and resuscitation of viable but nonculturable state and beer spoilagecapability of lactobacillus lindneri. Microb. Pathog. 107, 219–224. https://doi.org/10.1016/j.micpath.2017.03.043

Malmo, C., Giordano, I., & Mauriello, G. (2021). Effect of Microencapsulation on Survival at Simulated Gastrointestinal Conditions and Heat Treatment of a Non Probiotic Strain, Lactiplantibacillus plantarum 48M, and the Probiotic Strain Limosilactoba-cillus reuteri DSM 17938. Foods, 10, 217. https://doi.org/10.3390/foods10020217

Montoro, E., Lemus, D., Echemendia, M., Martin, A., Portaels, F., & Palomino, J.C. (2005). Comparative evaluation of the nitrate re-duction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Myco-bacterium tuberculosis. J. Antimicrob. Chemother., 55, 500–505. https://doi.org/10.1093/jac/dki023

Mshana, R.N., Tadesse, G., Abate, G., & Miorner, H. (1998). Use of 3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyl tetrazolium bromide for rapid detection of rifampin-resistant Mycobacterium tuberculosis. J. Clin. Microbiol., 36(5), 1214-1219. https://doi.org/10.1128/JCM.36.5.1214-1219.1998

Oh,Y.J. Hong, J. (2022), Application of the MTT-based colorimetric method for evaluating bacterial growth using different solvent systems. LWT Food Sci. Technol., 153, Article 112565. https://doi.org/10.1016/j.lwt.2021.112565

Oliver, J.D. (2005). The viable but non-culturable state in bacteria. J. Microbiol., 43, 93-100.

Oren, A. (1987). On the use of tetrazolium salts for the measurement of microbial activity in sediments. FEMS Microbiol. Ecol., 45, 127-133. https://doi.org/10.1111/j.1574-6968.1987.tb02348.x

Peng, L., Wang, B., & Ren, P. (2005). Reduction of MTT by flavonoids in the absence of cells. Colloids Surf. B., 45, 108-111. https://doi.org/10.1016/j.colsurfb.2005.07.014

Perez, M.G., Fourcade, L., Mateescu, M.A., & Paquin, J. (2017). Neutral red versus MTT assay of cell viability in the presence of copper compounds. Anal. Biochem., 535, 43-46. https://doi.org/10.1016/j.ab.2017.07.027

Pérez-Chabela, M.L., Lara-Labastida, R., Rodriguez-Huezo, E., & Totosaus, A. (2017). Effect of spray drying encapsulation of thermo-tolerant lactic acid bacteria on meat batters properties. Food Bioproc. Tech., 6, 1505-1515. https://doi.org/10.1007/s11947-012-0865-y

Ramamurthy, T., Ghosh, A., Pazhani, G.P., & Shinoda, S. (2014). Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front. Public Health., 2(103), 1-9. https://doi.org/10.3389/fpubh.2014.00103

Semyonov, D., Ramon, O., & Shimoni, E. (2011). Using ultrasonic vacuum spray dryer to produce highly viable dry probiotics. LWT - Food Sci. Technol., 44(9), 1844-52. https://doi.org/10.1016/j.lwt.2011.03.021

Sharma, R., Rashidinejad, A. & Jafari, S.M. (2022). Application of Spray Dried Encapsulated Probiotics in Functional Food Formulations. Food Bioprocess Technol., 15, 2135–2154. https://doi.org/10.1007/s11947-022-02803-6

Silljé, H.H., Paalman, J.W., ter Schure, E.G., Olsthoorn, S.Q.B., Verkleij, A.J., Boonstra, J., & Verrips, C.T. (1999). Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J. Bacteriol., 181(2), 396-400. https://doi.org/10.1128/JB.181.2.396-400.1999

Silva, A., Belda-Galbis, C.M., Zanini, S.F., Rodrigo, D., Martorell, P., & Martínez, A. (2012). Sublethal damage in Listeria monocytogenes after non-thermal treatments, and implications for food safety. Appl. Environ. Microbiol., 7570-7577.

Stowe, R.P., Koenig, D.W., Mishra, S.K., & Pierson, D.L. (1995). Nondestructive and continuous spectrophotometric measurement of cell respiration using a tetrazolium formazan microemulsion.J. Microbiol. Methods., 22, 283-292. https://doi.org/10.1016/0167-7012(95)00009-A

Tachon, S., Michelon, D., Chambellon, E., Cantonnet, M., Mezange, C., & Henno, L. (2009). Experimental conditions affect the site of tetrazolium violet reduction in the electron transport chain of Lactococcuslactis. Microbiology, 155, 2941-2948. https://doi.org/10.1099/mic.0.029678-0

Tavares, G.M., Croguennec, T., Carvalho, A.F., & Bouhallab, S. (2014). Milk proteins as encapsulation devices and delivery vehicles: applications and trends. Trends Food Sci. Technol., 37, 5-20. https://doi.org/10.1016/j.tifs.2014.02.008

Teixeira, P., Castro, H., & Kirby, R. (1995). Spray drying as a method for preparing concentrated cultures of Lactobacillus bulgaricus. J. appl. bacteriol., 78, 456-460. https://doi.org/10.1111/j.1365-2672.1995.tb03433.x

Tengerdy, R.P., Nagy, J.G., & Martin, B. (1967). Quantitative measurement of bacterial growth by the reduction of tetrazolium salts. Appl. Microbiol., 15(4), 954-955. https://doi.org/10.1128/am.15.4.954-955.1967

Tirta, G.D., Martin, L., Bani, M.D., Kho, K., Pramanda, I.T., Pui, L.P., How, Y.H., Lim, C.S.Y., & Devanthi, P.V.P. (2023). Spray Drying Encapsulation of Pediococcus acidilactici at Different Inlet Air Temperatures and Wall Material Ratios. Foods, 12, 165. https://doi.org/10.3390/foods12010165

Tripathi, M.K., & Giri, S.K. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods, 9(1), 225-241. https://doi.org/10.1016/j.jff.2014.04.030

Tsukatani, T., Suenaga, H., Higuchi, T., Akao, T., Ishiyama, M., Ezoe, K., & Matsumoto, K. (2008). Colorimetric cell proliferation assay for microorganisms in microtiter plate using water-soluble tetrazolium salts. J. Microbiol. Methods, 75, 109-116. https://doi.org/10.1016/j.mimet.2008.05.016

Wang, F., Cao, L., & Hu, S. (2007). A rapid and accurate 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide colorimetric assay for quantification of bacteriocins with nisin as an example. J. Zhejiang Univ. Sci. B., 8(8), 549-554. https://doi.org/10.1631/jzus.2007.B0549

Wang, H., Cheng, H., Wang, F., Wei, D., & Wang, X. (2010). An improved 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells. J. Microbiol. Methods., 82, 330–333. https://doi.org/10.1016/j.mimet.2010.06.014

Wang, Z., Chao, Y., Deng, Y., Piao, M., Chen, T., Xu, J., Zhang, R., Zhao, J., Deng, Y. (2020). Formation of viable, but putatively non-culturable (VPNC) cells of beer-spoilage lactobacilli growing in biofilms. LWT, 133, 109964. https://doi.org/10.1016/j.lwt.2020.109964

Wesche, A.M., Gurtler, J.B., Marks, B.P., & Ryser, E.T. (2009). Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J. Food Prot., 72, 1121-1138. https://doi.org/10.4315/0362-028X-72.5.1121

Weyermann, J., Lochmann, D., & Zimmer, A. (2005). A practical note on the use of cytotoxicity assays. Int. J. Pharm., 288, 369–376. https://doi.org/10.1016/j.ijpharm.2004.09.018

Xu, W., Shi, D., Chen, K., Palmer, J., & Popovich, D. G. (2023). An improved MTT colorimetric method for rapid viable bacteria counting, J. of Microbiol. Methods, 214, 106830. https://doi.org/10.1016/j.mimet.2023.106830

Zhao, X., Zhong, J., Wei, C., Lin, C.W., & Ding, T. (2017). Current perspectives on viable but non-culturable state in foodborne path-ogens. Front Microbiol., 8, 580. https://doi.org/10.3389/fmicb.2017.00580

Downloads

Published

2024-07-25

How to Cite

Bouri, M., Simsek Yazici, S., & Sahin, F. (2024). Detecting viable but non-culturable lactic acid bacteria following spray-drying and during storage. The European Chemistry and Biotechnology Journal, (2), 1–16. https://doi.org/10.62063/ecb-20

Issue

Section

Research Articles