Novel N,S-Substituted naphthoquinone analogues from aminonaphthoquinones

Abstract views: 366 / PDF downloads: 155


  • Halil Ozdinc Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar-Istanbul, Türkiye
  • Nihal Onul Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar-Istanbul, Türkiye
  • Funda Ozkok Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar-Istanbul, Türkiye



Aminonaphthoquinone, Naphthoquinone, Thionaphthoquinone


In this study, novel N,S-substituted naphthaquinone analogues (2, 4, 6, and 8) were synthesized from the reactions of previously known aminonaphthaquinone derivatives (1, 3, 5, and 7) with allyl mercaptan. 2-(allylthio)-3-(4-phenylpiperazin-1-yl)naphthalene-1,4-dione (2), 2-(allylthio)-3-(4-(2-fluorophenyl)piperazin-1-yl)naphthalene-1,4-dione (4), 2-(allylthio) -3-(4-benzylpiperidin-1-yl)naphthalene-1,4-dione (6) and 2-(4-chlorophenylamino)-3-(allylthio)naphthalene-1,4-dione (8) were obtained from the reactions of 2-chloro-3-(4-phenylpiperazin-1-yl)naphthalene-1,4-dione (1), 2-chloro-3-(4-(2-fluorophenyl)piperazin-1-yl)naphthalene-1,4-dione (3), 2-(4-benzylpiperidin-1-yl)-3-chloronaphthalene-1,4-dione (5), and 2-(4-chlorophenylamino) -3-chloronaphthalene-1,4-dione (7) with allyl mercaptan according to the general synthesis procedure. Synthesized new naphthaquinone analogues (2, 4, 6, and 8) were purified by column chromatography. The chemical structures of these novel N,S-substituted naphthaquinone analogues were characterized by spectroscopic methods (FT-IR, NMR, and MS).


Ajjan, F. N., Mecerreyes, D., & Inganäs, O. (2019). Enhancing energy storage devices with biomacromolecules in hybrid electrodes. Biotechnology journal, 14(12), e1900062.

Aziz, M.H., Dreckschmidt, N.E., & Verma, A.K. (2008). Plumbagin, a medicinal plant-derived naphtoquinone, is a novel inhibitor of the growth and invasion of hormone refractory prostate cancer. Cancer research, 68(21), 9024-9032.

Borghese, R., Brucale, M., Fortunato, G., Lanzi, M., Mezzi, A., Valle, F., Cavallini, M., & Zannoni D. (2017). Reprint of extracellular production of tellerium nanoparticules by the photosynthetic bacterium Rhodobacter capsulatus. Journal of hazardous materials, 324, 31-38.

Christiansen, J. V., Isbrandt, T., Petersen, C., Sondergaard, T. E., Nielsen, M. R., Pedersen, T. B., Sørensen, J. L., Larsen, T. O., & Frisvad, J. C. (2021). Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Applied microbiology and biotechnology, 105(21-22), 8157–8193.

Cruz, E.H.G., Hussene, C.M.B., Dias, G.G., Diago, E.B.T., Melo, İ.M.M., Rodrigues, B.L., Silva, M.G., Valenca, W.O., Camera, C.A., Oliverira, R.N., Paiva, V.G., Goulart, M.O.F., Cavalcanti, B.C., Pessoa, C., & Silva, EN. (2014). 1,2,3-triazole-, arylamino- and thio-substituted 1,4-naphthoquinones: potent antitumor activity, electrochemical aspects and bioisosteric replacement of C-ring-modified lapachones. Bioorganic & medicinal chemistry, 22(5), 1608-1619.

Durán, A.G., Chinchilla, N., Simonet, A.M., Gutiérrez, M.T., Bolívar, J., Valdivia, M.M., & Macías, F.A. (2023). Biological Activity of Naphthoquinones Derivatives in the Search of Anticancer Lead Compounds. Toxins, 15(5), 348.

Fries, K., & Kerkow, F. (1922). Uber lineares (Benzo-naptho)-parathiozia, Justus liebigs annalen der chemie, 427(2-3), 281-302.

Hussain, H., Krohn, K., Ahmad, V.U., Miana, G.A., & Green, I.R. (2007). Lapachol:an overview. Archive for organic chemistry, 2, 145-171.

Inagaki, R., Ninomiya, M., Tanoka, K., & Koketsu, M. (2015). Synthesis, characterization and antileukenic properties of naphtoquinone derivatives of lawsone. ChemMedChem, 10(8), 1413-1423.

Kalmayer, J.H., & Petesch, N. (1991). Amino quinone reactions 10. Photoreaction of 2-amino-3-chloro-1,4-napthoquinones. Pharmaceutica acta helvetiae, 66,130-136.

Kar, S., Lefterov, I.M., Wang, M., Lazo, J.S., Scott, C.N., Wilcox, C.S., & Carr, B.I. (2003). Binding and inhibition of Cdc25 phosphates by vitamin K analogues. Biochemistry, 42(35), 10490-10497.

Kavaliauskas, P., Opazo, F.S., Acevedo, W., Petraitiene, R., Grybaitė, B., Anusevičius, K., & Petraitis, V. (2022). Synthesis, biological activity, and molecular modelling studies of naphthoquinone derivatives as promising anticancer candidates targeting COX-2. Pharmaceuticals (Basel, Switzerland), 15(5), 541.

Liu, Z., Shen, Z., Xiang, S., Sun, Y., Cui, J., & Jia, J. (2023). Evaluation of 1, 4-naphthoquinone derivatives as antibacterial agents: activity and mechanistic studies. Frontiers of environmental science & engineering, 17(3), 31.

Lopez, L.I., Flores, S.D., Belmares, S.Y., & Galindo, A. (2014). Napthoquinones: Biological properties and synthesis of lawsone and derivatives. Vitae-revista de la facultad de quimica farmaceutica, 21(3), 248-258. ISSNe 2145-2660

López-López, L.I., Rivera-Ávalos, E., Villarreal-Reyes, C., Martínez-Gutiérrez, F., & de Loera, D. (2022). Synthesis and antimicrobial evaluation of amino acid Naphthoquinone derivatives as potential antibacterial agents. Chemotherapy, 67(2), 102-109.

Masi, M., Cimmino, A., Tabanca, N., Beanal, J.J., Bloomquist, J.R., Evidente, A. (2017). A survey of bacterial, fungal and plant metabolites against Aedes aegypti (diptera:culicidae), the vector of yellow and dangue fevers and Zika virus. Journal of open chemistry, 15, 156-166.

Nishikawa, Y., Carr, B.I., Wang, M., Kar, S., Finn, F., Dowel, P., Zheng, Z.B., Kernes, J., & Naganathan, S. (1995). Growth inhibition of hepatoma cells induced by K and its analogs. The Journal of biological chemistry, 270(47), 28304–28310.

Peralta, L.R., Lopez, L.I.L., Belmares, S.Y.S., Cruz, A.Z., Herrara, R.R., & Gonzalez, C.N.A. (2015). Naphthoquinone: Bioactivity and Green Synthesis, The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs,In:Vilas,A. M.,Edition: Vol. 1, Formatex Research Center. pp. 542-550.

Riffel, A., Medina, L.F., Stefani, V., Santos, R.C., Bizani, D., & Brandelli, A. (2002). In vitro antimicrobial activity of a new series of 1,4-naphthoquinones. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 35(7), 811–818.

Roy, K.M. (2000). Thiols and organic sulfides, ULLMANN'S Encyclopedia of Industrial Chemistry, Vol. 36, Wiley‐VCH (Electronic release 2017).

Souza, R.M.C., Pimentel, L.M.L.M., Ferreira, L.K.M., Pereira, V.R.A., Santos, A.C.D.S., Dantas, W.M., & De Oliveira, R.N. (2023). Biological activity of 1, 2, 3-triazole-2-amino-1, 4-naphthoquinone derivatives and their evaluation as therapeutic strategy for malaria control. European journal of medicinal chemistry, 255, 115400.

Tadashi, H., Hiroyuki, G., & Hiroyuki, T. (1996). Preparation of napthoquinones as inflammation inhibitors with cell adhesion inhibiting activity. J.P. 08113555 A19960507, Jpn. Kokai Tokkyo Kaho.

Vanallan, J.A., Reynolds, G.A., & Adel, R.E. (1963). Polynuclear heterocycles IV. The synthesis of some new heterocycles quinones. The Journal of organic chemistry, 28, 524-527.

Vollhardt, P., & Schore, N. (2009). Organic chemistry: structure and function. 6th edition, W.H. Freeman and Company, New York.




How to Cite

Ozdinc, H., Onul, N., & Ozkok, F. (2024). Novel N,S-Substituted naphthoquinone analogues from aminonaphthoquinones. The European Chemistry and Biotechnology Journal, (1), 1–10.



Research Articles