Online first

In-silico functional annotation and structural characterization of hypothetical proteins from Aliarcobacter butzleri BNI-3166: Insights into novel virulence and drug targets

Authors

DOI:

https://doi.org/10.62063/ecb-66

Keywords:

Aliarcobacter butzleri, Drug Target Identification, Functional Annotation, Hypothetical Proteins, In Silico Analysis

Abstract

Aliarcobacter butzleri is an emerging foodborne and zoonotic pathogen, yet many of its encoded proteins remain functionally uncharacterized. This lack of annotation limits understanding of its molecular mechanisms and hampers the identification of novel therapeutic targets. In this study, we systematically performed functional annotation of essential hypothetical proteins from the BNI-3166 strain using an integrative-in-silico approach to uncover potential drug and vaccine candidates. 2,367 protein-coding sequences were retrieved from the RefSeq database and were identified 356 as hypothetical proteins. Using BLASTp, we screened these HPs against the Database of Essential Genes and the human proteome to identify essential non-homologous proteins, resulting in 20 ENH candidates. Functional annotation was performed using several domain-based databases, including Pfam, InterPro, SMART, and SUPERFAMILY. Subsequently, physicochemical properties were analyzed and predicted subcellular localization using PSORTb and CELLO. To assess druggability, the ChEMBL database was used. Virulence factors using VFDB, VICMpred, and VirulentPred 2.0 were also predicted. Gene Ontology annotations were generated via ARGOT2.5. Furthermore, we explored protein-protein interactions using STRING and predicted tertiary structures with AlphaFold3. Moreover, Ligand binding pockets were predicted using PrankWeb, and antigenicity of vaccine candidates was assessed using VaxiJen v2.0. We identified 20 essential non-homologous hypothetical proteins, of which 10 were confidently annotated based on conserved domain analysis. These proteins were classified as enzymes, binding proteins, transporters, regulatory proteins, and potential virulence factors. Among them, eight exhibited characteristics of promising drug targets, while two showed potential as vaccine candidates based on subcellular localization. Druggability analysis revealed that nine proteins had no similarity to known drug targets, suggesting novel therapeutic potential. Predicted 3D structures generated using AlphaFold3 yielded pTM scores ranging from 0.44 to 0.92, indicating acceptable to high modeling confidence. Ligand binding site analysis confirmed druggability in six candidates, and antigenicity screening identified one protein as a potential vaccine target. This study provides a computational framework for identifying functionally important proteins in A. butzleri BNI-3166 and highlights novel therapeutic candidates for experimental validation, offering new directions in drug and vaccine development against this underexplored pathogen.

References

Abay, S., Kayman, T., Hizlisoy, H., & Aydin, F. (2012). In vitro antibacterial susceptibility of Arcobacter butzleri isolated from different sources. Journal of Veterinary Medical Science, 74(5), 613–616. https://doi.org/10.1292/jvms.11-0487 DOI: https://doi.org/10.1292/jvms.11-0487

Alcorlo, M., Straume, D., Lutkenhaus, J., Håvarstein, L. S., & Hermoso, J. A. (2020). Structural characterization of the essential cell division protein ftse and its interaction with ftsx in streptococcus pneumoniae. MBio, 11(5), 1–20. https://doi.org/10.1128/mBio.01488-20 DOI: https://doi.org/10.1128/mBio.01488-20

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 DOI: https://doi.org/10.1016/S0022-2836(05)80360-2

Barh, D., Tiwari, S., Jain, N., Ali, A., Santos, A. R., Misra, A. N., Azevedo, V., & Kumar, A. (2011). In silico subtractive genomics for target identification in human bacterial pathogens. Drug Development Research, 72(2), 162–177. https://doi.org/10.1002/ddr.20413 DOI: https://doi.org/10.1002/ddr.20413

Bjornson, H. S. (1984). Enzymes associated with the survival and virulence of gram-negative anaerobes. Reviews of Infectious Diseases, 6 Suppl 1(April), 21–24. https://doi.org/10.1093/clinids/6.supplement_1.s21 DOI: https://doi.org/10.1093/clinids/6.Supplement_1.S21

Blatch, G. L., & Lässle, M. (1999). The tetratricopeptide repeat: A structural motif mediating protein-protein interactions. BioEssays, 21(11), 932–939. https://doi.org/10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.0.CO;2-N DOI: https://doi.org/10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.3.CO;2-E

Blum, M., Andreeva, A., Florentino, L. C., Chuguransky, S. R., Grego, T., Hobbs, E., Pinto, B. L., Orr, A., Paysan-Lafosse, T., Ponamareva, I., Salazar, G. A., Bordin, N., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunic, I., Llinares-López, F., … Bateman, A. (2025). InterPro: The protein sequence classification resource in 2025. Nucleic Acids Research, 53(D1), D444–D456. https://doi.org/10.1093/nar/gkae1082 DOI: https://doi.org/10.1093/nar/gkae1082

Borong, L., Xue, Q., Jinling, L., & Kan, Z. (2020). Role of Protein Glycosylation in Host-Pathogen Interaction. Cells, 9(4), 1022. https://doi.org/10.3390/cells9041022 DOI: https://doi.org/10.3390/cells9041022

Casutt, M. S., Nedielkov, R., Wendelspiess, S., Miyoshi, H., Möller, H. M., Steuber, J., Vossler, S., & Gerken, U. (2011). Localization of ubiquinone-8 in the Na +-pumping NADH: Quinone oxidoreductase from Vibrio cholerae. Journal of Biological Chemistry, 286(46), 40075–40082. https://doi.org/10.1074/jbc.M111.224980 DOI: https://doi.org/10.1074/jbc.M111.224980

Chen, L., Zheng, D., Liu, B., Yang, J., & Jin, Q. (2016). VFDB 2016: Hierarchical and refined dataset for big data analysis - 10 years on. Nucleic Acids Research, 44(D1), D694–D697. https://doi.org/10.1093/nar/gkv1239 DOI: https://doi.org/10.1093/nar/gkv1239

Chieffi, D., Fanelli, F., & Fusco, V. (2020). Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Comprehensive Reviews in Food Science and Food Safety, 19(4), 2071–2109. https://doi.org/10.1111/1541-4337.12577 DOI: https://doi.org/10.1111/1541-4337.12577

Collado, L., & Figueras, M. J. (2011). Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clinical Microbiology Reviews, 24(1), 174–192. https://doi.org/10.1128/CMR.00034-10 DOI: https://doi.org/10.1128/CMR.00034-10

Dalghi, M. G., Fernández, M. M., Ferreira-Gomes, M., Mangialavori, I. C., Malchiodi, E. L., Strehler, E. E., & Rossi, J. P. F. C. (2013). Plasma membrane calcium ATPase activity is regulated by actin oligomers through direct interaction. Journal of Biological Chemistry, 288(32), 23380–23393. https://doi.org/10.1074/jbc.M113.470542 DOI: https://doi.org/10.1074/jbc.M113.470542

Desvaux, M., Dumas, E., Chafsey, I., & Hébraud, M. (2006). Protein cell surface display in Gram-positive bacteria: From single protein to macromolecular protein structure. FEMS Microbiology Letters, 256(1), 1–15. https://doi.org/10.1111/j.1574-6968.2006.00122.x DOI: https://doi.org/10.1111/j.1574-6968.2006.00122.x

Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4 DOI: https://doi.org/10.1186/1471-2105-8-4

Fanelli, F., Di Pinto, A., Mottola, A., Mule, G., Chieffi, D., Baruzzi, F., Tantillo, G., & Fusco, V. (2019). Genomic characterization of arcobacter butzleriisolated from shellfish: Novel insight into antibiotic resistance and virulence determinants. Frontiers in Microbiology, 10, 670. https://doi.org/10.3389/fmicb.2019.00670 DOI: https://doi.org/10.3389/fmicb.2019.00670

Ferreira, S., Oleastro, M., & Domingues, F. (2019). Current insights on Arcobacter butzleri in food chain. Current Opinion in Food Science, 26, 9–17. https://doi.org/10.1016/j.cofs.2019.02.013 DOI: https://doi.org/10.1016/j.cofs.2019.02.013

Garg, A., & Gupta, D. (2008). VirulentPred: A SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics, 9, 1–12. https://doi.org/10.1186/1471-2105-9-62 DOI: https://doi.org/10.1186/1471-2105-9-62

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appe, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook (pp. 571–607). https://doi.org/10.1385/1-59259-890-0:571 DOI: https://doi.org/10.1385/1-59259-890-0:571

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, O., Davies, M., Hersey, A., Light, Y., McGlinchey, S., Michalovich, D., Al-Lazikani, B., & Overington (2012). ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Research, 40(D1), D1100-7. https://doi.org/10.1093/nar/gkr777 DOI: https://doi.org/10.1093/nar/gkr777

Giacometti, F., Lucchi, A., Di Francesco, A., Delogu, M., Grilli, E., Guarniero, I., Stancampiano, L., Manfreda, G., Merialdi, G., & Serraino, A. (2015). Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii circulation in a dairy farm and sources of milk contamination. Applied and Environmental Microbiology, 81(15), 5055–5063. https://doi.org/10.1128/AEM.01035-15 DOI: https://doi.org/10.1128/AEM.01035-15

Gill SC, V. H. P. (1989). Calculation of protein extinction coefficients from amino acid sequence data. Analytical Biochemistry, 182(2), 319–326. https://doi.org/10.1016/0003-2697(89)90602-7 DOI: https://doi.org/10.1016/0003-2697(89)90602-7

Gough, J., Karplus, K., Hughey, R., & Chothia, C. (2001). Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. Journal of Molecular Biology, 313(4), 903–919. https://doi.org/10.1006/jmbi.2001.5080 DOI: https://doi.org/10.1006/jmbi.2001.5080

Henikoff, J. G., Greene, E. A., Pietrokovski, S., & Henikoff, S. (2000). Increased coverage of protein families with the Blocks Database servers. Nucleic Acids Research, 28(1), 228–230. https://doi.org/10.1093/nar/28.1.228 DOI: https://doi.org/10.1093/nar/28.1.228

Hirokawa, T., Boon-Chieng, S., & Mitaku, S. (1998). SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics, 14(4), 378–379. https://doi.org/10.1093/bioinformatics/14.4.378 DOI: https://doi.org/10.1093/bioinformatics/14.4.378

Hsu, T.-T. D., & Lee, J. (2015). Global Distribution and Prevalence of Arcobacter in Food and Water. Zoonoses and Public Health, 62(8), 579–589. https://doi.org/10.1111/zph.12215 DOI: https://doi.org/10.1111/zph.12215

Hu, X.-J., Li, T., Wang, Y., Xiong, Y., Wu, X.-H., Zhang, D.-L., Ye, Z.-Q., & Wu, Y.-D. (2017). Prokaryotic and Highly-Repetitive WD40 Proteins: A Systematic Study. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-11115-1 DOI: https://doi.org/10.1038/s41598-017-11115-1

Jendele, L., Krivak, R., Skoda, P., Novotny, M., & Hoksza, D. (2019). PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Research, 47(W1), W345–W349. https://doi.org/10.1093/nar/gkz424 DOI: https://doi.org/10.1093/nar/gkz424

John, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., & Tunyasuvunakool, K. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2 DOI: https://doi.org/10.1038/s41586-021-03819-2

Kanehisa, M. (1997). Linking databases and organisms: GenomeNet resources in Japan. Trends in Biochemical Sciences, 22(11), 442–444. https://doi.org/10.1016/S0968-0004(97)01130-4 DOI: https://doi.org/10.1016/S0968-0004(97)01130-4

Khan, S., Jamal, M. S., Anjum, F., Rasool, M., Ansari, A., Islam, A., Ahmad, F., & Hassan, M. I. (2016). Functional annotation of putative conserved proteins from Borrelia burgdorferi to find potential drug targets. International Journal of Computational Biology and Drug Design, 9(4), 295–318. https://doi.org/10.1504/IJCBDD.2016.080099 DOI: https://doi.org/10.1504/IJCBDD.2016.080099

Kietsiri, P., Muangnapoh, C., Lurchachaiwong, W., Lertsethtakarn, P., Bodhidatta, L., Suthienkul, O., Waters, N. C., Demons, S. T., & Vesely, B. A. (2021). Characterization of Arcobacter spp. isolated from human diarrheal, non-diarrheal and food samples in Thailand. PLoS ONE, 16(2 February), 1–13. https://doi.org/10.1371/journal.pone.0246598 DOI: https://doi.org/10.1371/journal.pone.0246598

Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. L. (2001). Predicting Transmembrane Protein Topology with a Hidden Markov Model : Application to Complete Genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315 DOI: https://doi.org/10.1006/jmbi.2000.4315

Lavezzo, E., Falda, M., Fontana, P., Bianco, L., & Toppo, S. (2016). Enhancing protein function prediction with taxonomic constraints - The Argot2.5 web server. Methods, 93(2016), 15–23. https://doi.org/10.1016/j.ymeth.2015.08.021 DOI: https://doi.org/10.1016/j.ymeth.2015.08.021

Letunic, I., Khedkar, S., & Bork, P. (2021). SMART: Recent updates, new developments and status in 2020. Nucleic Acids Research, 49(D1), D458–D460. https://doi.org/10.1093/nar/gkaa937 DOI: https://doi.org/10.1093/nar/gkaa937

Liu, S., Chang, J. S., Herberg, J. T., Horng, M.-M., Tomich, P. K., Lin, A. H., & Marotti, K. R. (2006). Allosteric inhibition of Staphylococcus aureus D -alanine : D -alanine ligase revealed by crystallographic studies. Proceedings of the National Academy of Sciences, 103(41), 15178–15183. https://doi.org/10.1073/pnas.0604905103 DOI: https://doi.org/10.1073/pnas.0604905103

Lommel, M., & Strahl, S. (2009). Protein O-mannosylation: Conserved from bacteria to humans. Glycobiology, 19(8), 816–828. https://doi.org/10.1093/glycob/cwp066 DOI: https://doi.org/10.1093/glycob/cwp066

Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991 DOI: https://doi.org/10.1093/nar/gkz991

Luo, H., Lin, Y., Liu, T., Lai, F. L., Zhang, C. T., Gao, F., & Zhang, R. (2021). DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools. Nucleic Acids Research, 49(D1), D677–D686. https://doi.org/10.1093/nar/gkaa917 DOI: https://doi.org/10.1093/nar/gkaa917

Ma, Y., Ju, C., Zhou, G., Yu, M., Chen, H., He, J., Zhang, M., & Duan, Y. (2022). Genetic characteristics, antimicrobial resistance, and prevalence of Arcobacter spp. isolated from various sources in Shenzhen, China. Frontiers in Microbiology, 13, 1004224. https://doi.org/10.3389/fmicb.2022.1004224 DOI: https://doi.org/10.3389/fmicb.2022.1004224

Mateus, C., Nunes, A. R., Oleastro, M., Domingues, F., & Ferreira, S. (2021). Rnd efflux systems contribute to resistance and virulence of aliarcobacter butzleri. Antibiotics, 10(7), 823. https://doi.org/10.3390/antibiotics10070823 DOI: https://doi.org/10.3390/antibiotics10070823

Medina, G. A., Flores-Martin, S. N., Pereira, W. A., Figueroa, E. G., Guzmán, N. H., Letelier, P. J., Andaur, M. R., Leyán, P. I., Boguen, R. E., Hernández, A. H., & Fernández, H. (2022). Long-term survive of Aliarcobacter butzleri in two models symbiotic interaction with Acanthamoeba castellanii. Archives of Microbiology, 204(10), 1–6. https://doi.org/10.1007/s00203-022-03223-y DOI: https://doi.org/10.1007/s00203-022-03223-y

Mi, H., Muruganujan, A., Huang, X., Ebert, D., Mills, C., Guo, X., & Thomas, P. D. (2019). Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v. 14.0). In Physiology & behavior (Vol. 14, Issue 3). https://doi.org/10.1038/s41596-019-0128-8 DOI: https://doi.org/10.1038/s41596-019-0128-8

Miller, W. G., Parker, C. T., Rubenfield, M., Mendz, G. L., Wösten, M. M. S. M., Ussery, D. W., Stolz, J. F., Binnewies, T. T., Hallin, P. F., Wang, G., Malek, J. A., Rogosin, A., Stanker, L. H., & Mandrell, R. E. (2007). The complete genome sequence and analysis of the epsilonproteobacterium Arcobacter butzleri. PLoS ONE, 2(12). https://doi.org/10.1371/journal.pone.0001358 DOI: https://doi.org/10.1371/journal.pone.0001358

Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412–D419. https://doi.org/10.1093/nar/gkaa913 DOI: https://doi.org/10.1093/nar/gkaa913

Müller, E., Hotzel, H., Linde, J., Hänel, I., & Tomaso, H. (2020). Antimicrobial Resistance and in silico Virulence Profiling of Aliarcobacter butzleri Strains From German Water Poultry. Frontiers in Microbiology, 11(December). https://doi.org/10.3389/fmicb.2020.617685 DOI: https://doi.org/10.3389/fmicb.2020.617685

Nakashima, H., & Nishikawa, K. (1994). Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. In Journal of Molecular Biology (Vol. 238, Issue 1, pp. 54–61). https://doi.org/10.1006/jmbi.1994.1267 DOI: https://doi.org/10.1006/jmbi.1994.1267

Naqvi, A. A. T., Anjum, F., Khan, F. I., Islam, A., Ahmad, F., & Hassan, M. I. (2016). Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors . Genomics & Informatics, 14(3), 125. https://doi.org/10.5808/gi.2016.14.3.125 DOI: https://doi.org/10.5808/GI.2016.14.3.125

Naveed, M., Makhdoom, S. I., Abbas, G., Safdari, M., Farhadi, A., Habtemariam, S., Shabbir, M. A., Jabeen, K., Asif, M. F., & Tehreem, S. (2022). The Virulent Hypothetical Proteins: The Potential Drug Target Involved in Bacterial Pathogenesis. Mini Reviews in Medicinal Chemistry, 22(20), 2608–2623. https://doi.org/10.2174/1389557522666220413102107 DOI: https://doi.org/10.2174/1389557522666220413102107

Novak, A., Vuko-Tokić, M., Žitko, V., & Tonkić, M. (2024). Prolonged watery diarrhea and malnutrition caused by Aliarcobacter butzleri (formerly Arcobacter butzleri): the first pediatric case in Croatia and a literature review. Infezioni in Medicina, 32(2), 241–247. https://doi.org/10.53854/liim-3202-12 DOI: https://doi.org/10.53854/liim-3202-12

Oliveira, M. G. X. d., Cunha, M. P. V., Moreno, L. Z., Saidenberg, A. B. S., Vieira, M. A. M., Gomes, T. A. T., Moreno, A. M., & Knöbl, T. (2023). Antimicrobial Resistance and Pathogenicity of Aliarcobacter butzleri Isolated from Poultry Meat. Antibiotics, 12(2). https://doi.org/10.3390/antibiotics12020282 DOI: https://doi.org/10.3390/antibiotics12020282

Pranavathiyani, G., Prava, J., Rajeev, A. C., & Pan, A. (2020). Novel Target Exploration from Hypothetical Proteins of Klebsiella pneumoniae MGH 78578 Reveals a Protein Involved in Host-Pathogen Interaction. Frontiers in Cellular and Infection Microbiology, 10(April), 1–13. https://doi.org/10.3389/fcimb.2020.00109 DOI: https://doi.org/10.3389/fcimb.2020.00109

Pribnow, D. (1975). Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proceedings of the National Academy of Sciences of the United States of America, 72(3), 784–788. https://doi.org/10.1073/pnas.72.3.784 DOI: https://doi.org/10.1073/pnas.72.3.784

Ramees, T. P., Dhama, K., Karthik, K., Rathore, R. S., Kumar, A., Saminathan, M., Tiwari, R., Malik, Y. S., & Singh, R. K. (2017). Arcobacter: An emerging food-borne zoonotic pathogen, its public health concerns and advances in diagnosis and control - A comprehensive review. Veterinary Quarterly, 37(1), 136–161. https://doi.org/10.1080/01652176.2017.1323355 DOI: https://doi.org/10.1080/01652176.2017.1323355

Raymond, B. B. A., Madhkoor, R., Schleicher, I., Uphoff, C. C., Turnbull, L., Whitchurch, C. B., Rohde, M., Padula, M. P., & Djordjevic, S. P. (2018). Extracellular actin is a receptor for Mycoplasma hyopneumoniae. Frontiers in Cellular and Infection Microbiology, 8(FEB), 1–13. https://doi.org/10.3389/fcimb.2018.00054 DOI: https://doi.org/10.3389/fcimb.2018.00054

Saha, S., & Raghava, G. P. S. (2006). VICMpred: An SVM-based method for the prediction of functional proteins of gram-negative bacteria using amino acid patterns and composition. Genomics, Proteomics and Bioinformatics, 4(1), 42–47. https://doi.org/10.1016/S1672-0229(06)60015-6 DOI: https://doi.org/10.1016/S1672-0229(06)60015-6

Segal, G., Russo, J. J., & Shuman, H. A. (1999). Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. Molecular Microbiology, 34(4), 799–809. https://doi.org/10.1046/j.1365-2958.1999.01642.x DOI: https://doi.org/10.1046/j.1365-2958.1999.01642.x

Shahbaaz, M., Bisetty, K., Ahmad, F., & Imtaiyaz Hassan, M. (2015). Current Advances in the Identification and Characterization of Putative Drug and Vaccine Targets in the Bacterial Genomes. Current Topics in Medicinal Chemistry, 16(9), 1040–1069. https://doi.org/10.2174/1568026615666150825143307 DOI: https://doi.org/10.2174/1568026615666150825143307

Shahbaaz, M., Hassan, M. I., & Ahmad, F. (2013). Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20. PLoS ONE, 8(12). https://doi.org/10.1371/journal.pone.0084263 DOI: https://doi.org/10.1371/journal.pone.0084263

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303 DOI: https://doi.org/10.1101/gr.1239303

Sillitoe, I., Lewis, T. E., Cuff, A., Das, S., Ashford, P., Dawson, N. L., Furnham, N., Laskowski, R. A., Lee, D., Lees, J. G., Lehtinen, S., Studer, R. A., Thornton, J., & Orengo, C. A. (2015). CATH: Comprehensive structural and functional annotations for genome sequences. Nucleic Acids Research, 43(D1), D376–D381. https://doi.org/10.1093/nar/gku947 DOI: https://doi.org/10.1093/nar/gku947

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. v. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131 DOI: https://doi.org/10.1093/nar/gky1131

Thamm, A. M., Li, G., Taja-Moreno, M., Gerdes, S. Y., Crécy-Lagard, V. d., Bruner, S. D., & Hanson, A. D. (2017). A strictly monofunctional bacterial hydroxymethylpyrimidine phosphate kinase precludes damaging errors in thiamin biosynthesis. Biochemical Journal, 474(16), 2887–2895. https://doi.org/10.1042/BCJ20170437 DOI: https://doi.org/10.1042/BCJ20170437

Turab Naqvi, A. A., Rahman, S., Rubi, Zeya, F., Kumar, K., Choudhary, H., Jamal, M. S., Kim, J., & Hassan, M. I. (2017). Genome analysis of Chlamydia trachomatis for functional characterization of hypothetical proteins to discover novel drug targets. International Journal of Biological Macromolecules, 96, 234–240. https://doi.org/10.1016/j.ijbiomac.2016.12.045 DOI: https://doi.org/10.1016/j.ijbiomac.2016.12.045

Tusnády, G. E., & Simon, I. (2001). The HMMTOP transmembrane topology prediction server. Bioinformatics, 17(9), 849–850. https://doi.org/10.1093/bioinformatics/17.9.849 DOI: https://doi.org/10.1093/bioinformatics/17.9.849

Walian, P. J., Allen, S., Shatsky, M., Zeng, L., Szakal, E. D., Liu, H., Hall, S. C., Fisher, S. J., Lam, B. R., Singer, M. E., Geller, J. T., Jap, B. K., Brenner, S. E., Chandonia, J.-M., Hazen, T. C., Witkowska, H. E., & Biggin, M. D. (2012). High-throughput isolation and characterization of untagged membrane protein complexes: Outer membrane complexes of Desulfovibrio vulgaris. Journal of Proteome Research, 11(12), 5720–5735. https://doi.org/10.1021/pr300548d DOI: https://doi.org/10.1021/pr300548d

Yang, Z., Zeng, X., & Tsui, S. K. W. (2019). Investigating function roles of hypothetical proteins encoded by the Mycobacterium tuberculosis H37Rv genome. BMC Genomics, 20(1), 1–10. https://doi.org/10.1186/s12864-019-5746-6 DOI: https://doi.org/10.1186/s12864-019-5746-6

Yu, C.-S., Chen, Y.-C., Lu, C.-H., & Hwang, J.-K. (2006). Prediction of Protein Subcellular Localization. 64(3), 643–651. https://doi.org/10.1002/prot.21018 DOI: https://doi.org/10.1002/prot.21018

Yu, C., Lin, C., & Hwang, J. (2004). Predicting subcellular localization of proteins for Gram‐negative bacteria by support vector machines based on n ‐peptide compositions . Protein Science, 13(5), 1402–1406. https://doi.org/10.1110/ps.03479604 DOI: https://doi.org/10.1110/ps.03479604

Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S. C., Ester, M., Foster, L. J., & Brinkman, F. S. L. (2010). PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics, 26(13), 1608–1615. https://doi.org/10.1093/bioinformatics/btq249 DOI: https://doi.org/10.1093/bioinformatics/btq249

Zhao, R., Collins, E. J., Bourret, R. B., & Silversmith, R. E. (2002). Structure and catalytic mechanism of the e. coli chemotaxis phosphatase chez. Nature Structural Biology, 9(8), 570–575. https://doi.org/10.1038/nsb816 DOI: https://doi.org/10.1038/nsb816

Published

2025-09-28

How to Cite

Paul, S., Barua, S., & Barua, J. D. (2025). In-silico functional annotation and structural characterization of hypothetical proteins from Aliarcobacter butzleri BNI-3166: Insights into novel virulence and drug targets. The European Chemistry and Biotechnology Journal, 2026(5), e2026–003. https://doi.org/10.62063/ecb-66

Issue

Section

Research Articles