Antibacterial properties of substituted phenethylamine-based β-lactam derivatives in oral infections


Abstract views: 67 / PDF downloads: 0

Authors

DOI:

https://doi.org/10.62063/ecb-46

Keywords:

β-lactam, Phenetylamine, Oral pathogens, Antibacterial activity

Abstract

Oral infections are a type of infection that occurs in and around the mouth, typically arising when proper oral hygiene is neglected. These infections manifest as symptoms such as mouth sores, dental caries, and periodontal diseases, with dental caries being the most common form. Streptococcus and Lactobacillus bacteria are the primary causative agents in dental caries. These bacteria act as opportunistic pathogens, potentially leading to serious diseases. Moreover, antibiotic resistance is developing in these pathogenic bacteria, limiting treatment options. β-lactam antibiotics are particularly important due to their broad spectrum and selective toxicity. In this study, novel phenethylamine-based β-lactam derivatives were synthesized, and their antibacterial activities against oral pathogens were investigated. The antibacterial activities of the compounds were determined using agar well diffusion and microdilution assays. The study observed that β-lactam derivatives formed inhibitory zones against the growth of oral pathogens, while imine compounds did not form such zones. The diameter of the inhibition zones for the β-lactam compounds ranged from 0.9 to 2.1 cm. The MIC values were calculated to be between 12.5 and 100 μM. These data suggest that β-lactam derivatives could be potent therapeutic agents for oral infections.

References

Altamimi, M. A., Hussain, A., Alshehri, S., Imam, S. S., Alnami, A., & Bari, A. (2020). Novel Hemocompatible Imine Compounds as Alternatives for Antimicrobial Therapy in Pharmaceutical Application. Processes, 8(11). https://doi.org/10.3390/pr8111476

Anisimova, E., Gorokhova, I., Karimullina, G., & Yarullina, D. (2022). Alarming Antibiotic Resistance of Lactobacilli Isolated from Probiotic Preparations and Dietary Supplements. Antibiotics (Basel), 11(11). https://doi.org/10.3390/antibiotics11111557

Anisimova, E. A., & Yarullina, D. R. (2019). Antibiotic Resistance of Lactobacillus Strains. Current microbiology, 76(12), 1407-1416. https://doi.org/10.1007/s00284-019-01769-7

Ayi, B. (2007). Infections Caused by Viridans Streptococci. In S. J. Enna & D. B. Bylund (Eds.), xPharm: The Comprehensive Pharmacology Reference (pp. 1–5). New York: Elsevier. https://doi.org/10.1016/B978-008055232-3.60855-4

Bloch, S., Hager-Mair, F. F., Andrukhov, O., & Schäffer, C. (2024). Oral streptococci: modulators of health and disease. Frontiers in cellular and infection microbiology, 14. https://doi.org/10.3389/fcimb.2024.1357631

Caufield, P. W., Schön, C. N., Saraithong, P., Li, Y., & Argimón, S. (2015). Oral Lactobacilli and Dental Caries: A Model for Niche Adaptation in Humans. Journal of dental research, 94(9 Suppl), 110s-118s. https://doi.org/10.1177/0022034515576052

Chen, C.-C., Lai, C.-C., Huang, H.-L., Huang, W.-Y., Toh, H.-S., Weng, T.-C. Tang, H.-J. (2019). Antimicrobial Activity of Lactobacillus Species Against Carbapenem-Resistant Enterobacteriaceae. Frontiers in microbiology, 10. https://doi.org/10.3389/fmicb.2019.00789

Decuyper, L., Franceus, J., Dhaene, S., Debruyne, M., Vandoorne, K. and Piens, N. 2018. Chemoenzymatic Approach toward synthesizing 3-O-(α/β)-Glucosylated 3-Hydroxy-β-lactams. ACS omega, 3(11), 15235-15245. https://doi.org/10.1021/acsomega.8b01969

Fu, D. J., Fu, L., Liu, Y. C., Wang, J. W., Wang, Y. Q., Han, B. K., Li, X.R., Zhang, C., Li, F., Song, J., Zhao, B., Mao, R. W., Zhao, R. H., Zhang, S. Y., Zhang, L., Zhang, Y. B., Liu, H. M. (2017). Structure Activity Relationship Studies of beta-Lactam-azide Analogues as Orally Active Antitumor Agents Targeting the Tubulin Colchicine Site. Scientific reports, 7. https://doi.org/10.1038/s41598-01712912-4

Gaynes, R. (2017). The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerging infectious diseases, 23(5), 849–853. https://doi.org/10.3201/eid2305.161556

Genc, H., Kalin, R., Koksal, Z., Sadeghian, N., Kocyigit, U. M., Zengin, M., Gulcın, I., Ozdemir, H. (2016). Discovery of Potent Carbonic Anhydrase and Acetylcholinesterase Inhibitors: 2-Aminoindan beta-Lactam Derivatives. International journal of molecular sciences, 17(10), 13. https://doi.org/10.3390/ijms17101736

Gormez, A., Bozari, S., Yanmis, D., Gulluce, M., Sahin, F., & Agar, G. (2015). Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic Bacteria. Polish journal of microbiology, 64(2), 121-127. https://doi.org/10.33073/pjm-2015-018

Hirasawa, M., & Takada, K. (2002). Susceptibility of Streptococcus mutans and Streptococcus sobrinus to Cell Wall Inhibitors and Development of a Novel Selective Medium for S. sobrinus. Caries research, 36(3), 155-160. https://doi.org/10.1159/000059329

Hohwy, J., Reinholdt, J., & Kilian, M. (2001). Population Dynamics of Streptococcus mitis in Its Natural Habitat. Infection and immunity, 69(10), 6055-6063. https://doi.org/10.1128/IAI.69.10.60556063.2001

Kullar, R., Goldstein, E. J. C., Johnson, S., & McFarland, L. V. (2023). Lactobacillus Bacteremia and Probiotics: A Review. Microorganisms, 11(4). https://doi.org/10.3390/microorganisms11040896

Lemos, J. A., Palmer, S. R., Zeng, L., Wen, Z. T., Kajfasz, J. K., Freires, I. Abranches, J., Brady, L. J. (2019). The Biology of Streptococcus mutans. Microbiology spectrum, 7(1). https://doi.org/10.1128/microbiolspec.GPP3-0051-2018

Li, X., Kolltveit, K. M., Tronstad, L., & Olsen, I. (2000). Systemic diseases caused by oral infection. Clinical microbiology reviews, 13(4), 547–558. https://doi.org/10.1128/CMR.13.4.547

Love, B. E., & Ren, J. (1993). Synthesis of sterically hindered imines. The Journal of organic chemistry, 58(20), 5556-5557. https://doi.org/10.1021/jo00072a051

Mann, S., Park, M. S., Johnston, T. V., Ji, G. E., Hwang, K. T., & Ku, S. (2021). Isolation, Characterization, and Biosafety Evaluation of Lactobacillus Fermentum OK with Potential Oral Probiotic Properties. Probiotics and antimicrobial proteins, 13(5), 1363–1386. https://doi.org/10.1007/s12602-021-09761-z

Nakayama, A., Takao, A., Usui, H., Nagashima, H., Maeda, N., & Ishibashi, K. (2006). Beta-lactam resistance in Streptococcus mitis isolated from saliva of healthy subjects. International congress series, 1289, 115-118. https://doi.org/10.1016/j.ics.2005.11.022

Nomura, R., Matayoshi, S., Otsugu, M., Kitamura, T., Teramoto, N., & Nakano, K. (2020). Contribution of Severe Dental Caries Induced by Streptococcus mutans to the Pathogenicity of Infective Endocarditis. Infection and immunity, 88(7). https://doi.org/10.1128/IAI.00897-19

Nyvad, B., & Takahashi, N. (2020). Integrated hypothesis of dental caries and periodontal diseases. Journal of oral microbiology, 12(1), 1710953. https://doi.org/10.1080/20002297.2019.1710953

Payili, N., Yennam, S., Rekula, S. R., Naidu, C. G., Bobde, Y., & Ghosh, B. (2018). Design, Synthesis, and Evaluation of the Anticancer Properties of Novel Quinone Bearing Carbamyl β-Lactam Hybrids. Journal of heterocyclic chemistry, 55(6), 1358-1365. https://doi.org/10.1002/jhet.3169

Ozgeris, B. (2021). Design, synthesis, characterization, and biological evaluation of nicotinoyl thioureas as antimicrobial and antioxidant agents. The journal of antibiotics, 74. https://doi.org/10.1038/s41429-020-00399-7

Seow, K. W., Lam, J.H.C., Tsang, A.K. L., Holcombe, T., & Bird, P.S. (2009). Oral Streptococcus species in pre-term and full-term children – a longitudinal study. International Journal of Paediatric Dentistry, 19(6), 406–411. https://doi.org/10.1111/j.1365-263X.2009.01003.x

Sato, T., Fukuzawa, Y., Kawakami, S., Suzuki, M., Tanaka, Y., Terayama, H., & Sakabe, K. (2021). The Onset of Dental Erosion Caused by Food and Drinks and the Preventive Effect of Alkaline Ionized Water. Nutrients, 13(10), 3440. https://doi.org/10.3390/nu13103440

Sa’ad, M. A., Kavitha, R., Fuloria, S., Fuloria, N. K., Ravichandran, M., & Lalitha, P. (2022). Synthesis, Characterization and Biological Evaluation of Novel Benzamidine Derivatives: Newer Antibiotics for Periodontitis Treatment. Antibiotics, 11(2). https://doi.org/10.3390/antibiotics11020207

Smith, P. W., Zuccotto, F., Bates, R. H., Martinez-Martinez, M. S., Read, K. D., Peet, C., & Epemolu,O. (2018). Pharmacokinetics of β-Lactam Antibiotics: Clues from the Past To Help Discover Long-Acting Oral Drugs in the Future. ACS infectious diseases, 4(10), 1439-1447. https://doi.org/10.1021/acsinfecdis.8b00160

Spatafora, G., Li, Y., He, X., Cowan, A., & Tanner, A. C. R. (2024). The Evolving Microbiome of Dental Caries. Microorganisms, 12(1). https://doi.org/10.3390/microorganisms12010121

Staudinger, H. 1907. Zur Kenntniss der Ketene. Diphenylketen. Justus liebigs annalen der chemie, 356(2), 51-123. https://doi.org/10.1002/jlac.19073560106

Wajima, T., Hagimoto, A., Tanaka, E., Kawamura, Y., & Nakaminami, H. (2022). Identify and characterize a novel multidrug-resistant streptococcus, Streptococcus toyakuensis sp. nov., from a blood sample. Journal of global antimicrobial resistance, 29, 316-322. https://doi.org/10.1016/j.jgar.2022.04.018

Wen, Z. T., Huang, X., Ellepola, K., Liao, S., & Li, Y. (2022). Lactobacilli and human dental caries: more than mechanical retention. Microbiology, 168(6). https://doi.org/10.1099/mic.0.001196

Yamase, T., Fukuda, N., & Tajima, Y. (1996). Synergistic effect of polyoxotungstates in combination with beta-lactam antibiotics on antibacterial activity against methicillin-resistant Staphylococcus aureus. Biological & pharmaceutical bulletin, 19(3), 459-465. https://doi.org/10.1248/bpb.19.459

Yildirim, M., Ozgeris, B., & Gormez, A. (2022). Substituted phenethylamine-based 8-lactam derivatives: Antimicrobial, anticancer, and 8-lactamase inhibitory properties. Bioorganic chemistry, 129, 106212. https://doi.org/10.1016/j.bioorg.2022.106212

Zhang, B., Zhao, M., Tian, J., Lei, L., & Huang, R. (2022). Novel antimicrobial agents targeting the Streptococcus mutans biofilms were discovered through computer technology. Frontiers in cellular and infection microbiology, 12, 1065235. https://doi.org/10.3389/fcimb.2022.1065235

Zhu, Y., Wang, Y., Zhang, S., Li, J., Li, X., Ying, Y., Yuan, J., Chen, K., Deng, S., Wang, Q. (2023). Association of polymicrobial interactions with dental caries development and prevention. Frontiers in microbiol, 14, 1162380. https://doi.org/10.3389/fmicb.2023.1162380

Downloads

Published

2025-01-20

How to Cite

Yildirim, M., Aksakal, E., Bayram, T. Y., Irmak, E., Gun, H., Ozgeris, B., & Gormez, A. (2025). Antibacterial properties of substituted phenethylamine-based β-lactam derivatives in oral infections. The European Chemistry and Biotechnology Journal, (3), 47–56. https://doi.org/10.62063/ecb-46

Issue

Section

Research Articles