Antibacterial properties of substituted phenethylamine-based β-lactam derivatives in oral infections
Abstract views: 67 / PDF downloads: 0
DOI:
https://doi.org/10.62063/ecb-46Keywords:
β-lactam, Phenetylamine, Oral pathogens, Antibacterial activityAbstract
Oral infections are a type of infection that occurs in and around the mouth, typically arising when proper oral hygiene is neglected. These infections manifest as symptoms such as mouth sores, dental caries, and periodontal diseases, with dental caries being the most common form. Streptococcus and Lactobacillus bacteria are the primary causative agents in dental caries. These bacteria act as opportunistic pathogens, potentially leading to serious diseases. Moreover, antibiotic resistance is developing in these pathogenic bacteria, limiting treatment options. β-lactam antibiotics are particularly important due to their broad spectrum and selective toxicity. In this study, novel phenethylamine-based β-lactam derivatives were synthesized, and their antibacterial activities against oral pathogens were investigated. The antibacterial activities of the compounds were determined using agar well diffusion and microdilution assays. The study observed that β-lactam derivatives formed inhibitory zones against the growth of oral pathogens, while imine compounds did not form such zones. The diameter of the inhibition zones for the β-lactam compounds ranged from 0.9 to 2.1 cm. The MIC values were calculated to be between 12.5 and 100 μM. These data suggest that β-lactam derivatives could be potent therapeutic agents for oral infections.
References
Altamimi, M. A., Hussain, A., Alshehri, S., Imam, S. S., Alnami, A., & Bari, A. (2020). Novel Hemocompatible Imine Compounds as Alternatives for Antimicrobial Therapy in Pharmaceutical Application. Processes, 8(11). https://doi.org/10.3390/pr8111476
Anisimova, E., Gorokhova, I., Karimullina, G., & Yarullina, D. (2022). Alarming Antibiotic Resistance of Lactobacilli Isolated from Probiotic Preparations and Dietary Supplements. Antibiotics (Basel), 11(11). https://doi.org/10.3390/antibiotics11111557
Anisimova, E. A., & Yarullina, D. R. (2019). Antibiotic Resistance of Lactobacillus Strains. Current microbiology, 76(12), 1407-1416. https://doi.org/10.1007/s00284-019-01769-7
Ayi, B. (2007). Infections Caused by Viridans Streptococci. In S. J. Enna & D. B. Bylund (Eds.), xPharm: The Comprehensive Pharmacology Reference (pp. 1–5). New York: Elsevier. https://doi.org/10.1016/B978-008055232-3.60855-4
Bloch, S., Hager-Mair, F. F., Andrukhov, O., & Schäffer, C. (2024). Oral streptococci: modulators of health and disease. Frontiers in cellular and infection microbiology, 14. https://doi.org/10.3389/fcimb.2024.1357631
Caufield, P. W., Schön, C. N., Saraithong, P., Li, Y., & Argimón, S. (2015). Oral Lactobacilli and Dental Caries: A Model for Niche Adaptation in Humans. Journal of dental research, 94(9 Suppl), 110s-118s. https://doi.org/10.1177/0022034515576052
Chen, C.-C., Lai, C.-C., Huang, H.-L., Huang, W.-Y., Toh, H.-S., Weng, T.-C. Tang, H.-J. (2019). Antimicrobial Activity of Lactobacillus Species Against Carbapenem-Resistant Enterobacteriaceae. Frontiers in microbiology, 10. https://doi.org/10.3389/fmicb.2019.00789
Decuyper, L., Franceus, J., Dhaene, S., Debruyne, M., Vandoorne, K. and Piens, N. 2018. Chemoenzymatic Approach toward synthesizing 3-O-(α/β)-Glucosylated 3-Hydroxy-β-lactams. ACS omega, 3(11), 15235-15245. https://doi.org/10.1021/acsomega.8b01969
Fu, D. J., Fu, L., Liu, Y. C., Wang, J. W., Wang, Y. Q., Han, B. K., Li, X.R., Zhang, C., Li, F., Song, J., Zhao, B., Mao, R. W., Zhao, R. H., Zhang, S. Y., Zhang, L., Zhang, Y. B., Liu, H. M. (2017). Structure Activity Relationship Studies of beta-Lactam-azide Analogues as Orally Active Antitumor Agents Targeting the Tubulin Colchicine Site. Scientific reports, 7. https://doi.org/10.1038/s41598-01712912-4
Gaynes, R. (2017). The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerging infectious diseases, 23(5), 849–853. https://doi.org/10.3201/eid2305.161556
Genc, H., Kalin, R., Koksal, Z., Sadeghian, N., Kocyigit, U. M., Zengin, M., Gulcın, I., Ozdemir, H. (2016). Discovery of Potent Carbonic Anhydrase and Acetylcholinesterase Inhibitors: 2-Aminoindan beta-Lactam Derivatives. International journal of molecular sciences, 17(10), 13. https://doi.org/10.3390/ijms17101736
Gormez, A., Bozari, S., Yanmis, D., Gulluce, M., Sahin, F., & Agar, G. (2015). Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic Bacteria. Polish journal of microbiology, 64(2), 121-127. https://doi.org/10.33073/pjm-2015-018
Hirasawa, M., & Takada, K. (2002). Susceptibility of Streptococcus mutans and Streptococcus sobrinus to Cell Wall Inhibitors and Development of a Novel Selective Medium for S. sobrinus. Caries research, 36(3), 155-160. https://doi.org/10.1159/000059329
Hohwy, J., Reinholdt, J., & Kilian, M. (2001). Population Dynamics of Streptococcus mitis in Its Natural Habitat. Infection and immunity, 69(10), 6055-6063. https://doi.org/10.1128/IAI.69.10.60556063.2001
Kullar, R., Goldstein, E. J. C., Johnson, S., & McFarland, L. V. (2023). Lactobacillus Bacteremia and Probiotics: A Review. Microorganisms, 11(4). https://doi.org/10.3390/microorganisms11040896
Lemos, J. A., Palmer, S. R., Zeng, L., Wen, Z. T., Kajfasz, J. K., Freires, I. Abranches, J., Brady, L. J. (2019). The Biology of Streptococcus mutans. Microbiology spectrum, 7(1). https://doi.org/10.1128/microbiolspec.GPP3-0051-2018
Li, X., Kolltveit, K. M., Tronstad, L., & Olsen, I. (2000). Systemic diseases caused by oral infection. Clinical microbiology reviews, 13(4), 547–558. https://doi.org/10.1128/CMR.13.4.547
Love, B. E., & Ren, J. (1993). Synthesis of sterically hindered imines. The Journal of organic chemistry, 58(20), 5556-5557. https://doi.org/10.1021/jo00072a051
Mann, S., Park, M. S., Johnston, T. V., Ji, G. E., Hwang, K. T., & Ku, S. (2021). Isolation, Characterization, and Biosafety Evaluation of Lactobacillus Fermentum OK with Potential Oral Probiotic Properties. Probiotics and antimicrobial proteins, 13(5), 1363–1386. https://doi.org/10.1007/s12602-021-09761-z
Nakayama, A., Takao, A., Usui, H., Nagashima, H., Maeda, N., & Ishibashi, K. (2006). Beta-lactam resistance in Streptococcus mitis isolated from saliva of healthy subjects. International congress series, 1289, 115-118. https://doi.org/10.1016/j.ics.2005.11.022
Nomura, R., Matayoshi, S., Otsugu, M., Kitamura, T., Teramoto, N., & Nakano, K. (2020). Contribution of Severe Dental Caries Induced by Streptococcus mutans to the Pathogenicity of Infective Endocarditis. Infection and immunity, 88(7). https://doi.org/10.1128/IAI.00897-19
Nyvad, B., & Takahashi, N. (2020). Integrated hypothesis of dental caries and periodontal diseases. Journal of oral microbiology, 12(1), 1710953. https://doi.org/10.1080/20002297.2019.1710953
Payili, N., Yennam, S., Rekula, S. R., Naidu, C. G., Bobde, Y., & Ghosh, B. (2018). Design, Synthesis, and Evaluation of the Anticancer Properties of Novel Quinone Bearing Carbamyl β-Lactam Hybrids. Journal of heterocyclic chemistry, 55(6), 1358-1365. https://doi.org/10.1002/jhet.3169
Ozgeris, B. (2021). Design, synthesis, characterization, and biological evaluation of nicotinoyl thioureas as antimicrobial and antioxidant agents. The journal of antibiotics, 74. https://doi.org/10.1038/s41429-020-00399-7
Seow, K. W., Lam, J.H.C., Tsang, A.K. L., Holcombe, T., & Bird, P.S. (2009). Oral Streptococcus species in pre-term and full-term children – a longitudinal study. International Journal of Paediatric Dentistry, 19(6), 406–411. https://doi.org/10.1111/j.1365-263X.2009.01003.x
Sato, T., Fukuzawa, Y., Kawakami, S., Suzuki, M., Tanaka, Y., Terayama, H., & Sakabe, K. (2021). The Onset of Dental Erosion Caused by Food and Drinks and the Preventive Effect of Alkaline Ionized Water. Nutrients, 13(10), 3440. https://doi.org/10.3390/nu13103440
Sa’ad, M. A., Kavitha, R., Fuloria, S., Fuloria, N. K., Ravichandran, M., & Lalitha, P. (2022). Synthesis, Characterization and Biological Evaluation of Novel Benzamidine Derivatives: Newer Antibiotics for Periodontitis Treatment. Antibiotics, 11(2). https://doi.org/10.3390/antibiotics11020207
Smith, P. W., Zuccotto, F., Bates, R. H., Martinez-Martinez, M. S., Read, K. D., Peet, C., & Epemolu,O. (2018). Pharmacokinetics of β-Lactam Antibiotics: Clues from the Past To Help Discover Long-Acting Oral Drugs in the Future. ACS infectious diseases, 4(10), 1439-1447. https://doi.org/10.1021/acsinfecdis.8b00160
Spatafora, G., Li, Y., He, X., Cowan, A., & Tanner, A. C. R. (2024). The Evolving Microbiome of Dental Caries. Microorganisms, 12(1). https://doi.org/10.3390/microorganisms12010121
Staudinger, H. 1907. Zur Kenntniss der Ketene. Diphenylketen. Justus liebigs annalen der chemie, 356(2), 51-123. https://doi.org/10.1002/jlac.19073560106
Wajima, T., Hagimoto, A., Tanaka, E., Kawamura, Y., & Nakaminami, H. (2022). Identify and characterize a novel multidrug-resistant streptococcus, Streptococcus toyakuensis sp. nov., from a blood sample. Journal of global antimicrobial resistance, 29, 316-322. https://doi.org/10.1016/j.jgar.2022.04.018
Wen, Z. T., Huang, X., Ellepola, K., Liao, S., & Li, Y. (2022). Lactobacilli and human dental caries: more than mechanical retention. Microbiology, 168(6). https://doi.org/10.1099/mic.0.001196
Yamase, T., Fukuda, N., & Tajima, Y. (1996). Synergistic effect of polyoxotungstates in combination with beta-lactam antibiotics on antibacterial activity against methicillin-resistant Staphylococcus aureus. Biological & pharmaceutical bulletin, 19(3), 459-465. https://doi.org/10.1248/bpb.19.459
Yildirim, M., Ozgeris, B., & Gormez, A. (2022). Substituted phenethylamine-based 8-lactam derivatives: Antimicrobial, anticancer, and 8-lactamase inhibitory properties. Bioorganic chemistry, 129, 106212. https://doi.org/10.1016/j.bioorg.2022.106212
Zhang, B., Zhao, M., Tian, J., Lei, L., & Huang, R. (2022). Novel antimicrobial agents targeting the Streptococcus mutans biofilms were discovered through computer technology. Frontiers in cellular and infection microbiology, 12, 1065235. https://doi.org/10.3389/fcimb.2022.1065235
Zhu, Y., Wang, Y., Zhang, S., Li, J., Li, X., Ying, Y., Yuan, J., Chen, K., Deng, S., Wang, Q. (2023). Association of polymicrobial interactions with dental caries development and prevention. Frontiers in microbiol, 14, 1162380. https://doi.org/10.3389/fmicb.2023.1162380
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.